Complex Numbers
FAMAT State Convention 2002

PLEASE NOTE THE FOLLOWING FOR THIS TEST: (1) \(i = \sqrt{-1} \), the unit imaginary number. (2) If \(z \) is a complex number, then \(\bar{z} \) is the conjugate of \(z \), and \(|z| \) is the absolute value of \(z \). (3) Whenever a complex number is given in the standard form, \(a + bi \), it is assumed that “a” and “b” are real numbers. (4) Choice E) NOTA is meant to denote “None of these Answers”.

1) Evaluate \((2 - 3i)^4\).
 A) 119-120i B) -119 + 120i C) 119+120i D) -119 – 120i E) NOTA

2) Evaluate the determinant and solve for “x”.
 \[
 \begin{vmatrix}
 x & 2 & 1 \\
 0 & i & 1 \\
 -1 & 2 & i \\
 \end{vmatrix}
 = i - 2
 \]
 A) -1 B) 0 C) 1 D) 2 E) NOTA

3) Evaluate \(2z + \overline{z}\) given that \(z = 5 + 8i\).
 A) 15 B) 17 C) 23 D) 34 E) NOTA

4) Which of the following is a solution to \(x^3 + 5x^2 + 10x + 12 = 0\).
 A) 3 B) \(1 + i\sqrt{3}\) C) \(1 - 2i\sqrt{3}\) D) \(-1 + i\sqrt{3}\) E) NOTA

5) Evaluate the following: \(\prod_{n=1}^{5}^{ni}\)
 A) 120i B) 15i C) 120 D) 15 E) NOTA

6) Given the polynomial \(h(x) = 9x^3 - 2ix^2 + 3x - 6\), find \(h(-i)\).
 A) 6-8i B) 6+8i C) -6 + 8i D) -6 – 8i E) NOTA

7) Find the Cartesian coordinates of the polar coordinate \(\left(5, \frac{7\pi}{6}\right)\).
 A) \(\left(-\frac{5\sqrt{3}}{2}, -\frac{5}{2}\right)\) B) \(\left(-\frac{5\sqrt{2}}{2}, -\frac{5}{2}\right)\) C) \(\left(-\frac{5\sqrt{3}}{3}, -\frac{5}{3}\right)\) D) \(\left(-\frac{3\sqrt{2}}{2}, -\frac{3}{2}\right)\) E) NOTA
8) Evaluate the following: \[\sum_{n=1}^{9} \left(\frac{\pi}{2} \right)^n \]

A) \(-i\) B) \(-1\) C) 1 D) \(i\) E) NOTA

9) Find \(|6 - 4i|\).

A) \(\sqrt{13}\) B) \(2\sqrt{13}\) C) 2 D) 10 E) NOTA

10) Express \(\frac{1}{(2+i)(7-i)}\) as a complex number in a + bi form.

A) \(15 + 5i\) B) \(\frac{1}{15} + i \frac{1}{15}\) C) \(\frac{3}{50} + i \frac{1}{50}\) D) \(\frac{3}{50} - i \frac{1}{50}\) E) NOTA

11) How many of the following statements are true? (Note: \(z \neq 0 + 0i\))

I) If \(z\) is a complex number, then \(\bar{z}^2\) is always a real number.
II) If \(z\) is a complex number, then \(z + \bar{z}\) is always an imaginary number.
III) The sum of the absolute values of the three cube roots of 8 is 6.
IV) If \(z\) is a complex number, then \(\overline{(z)}(\overline{(z)}^{-1}) = z^2\)

A) 0 B) 1 C) 2 D) 3 E) NOTA

12) Evaluate \(\frac{i\pi}{6}\).

A) \(-\sqrt{3} - i\) B) \(-\sqrt{3} + i\) C) \(\sqrt{3} - i\) D) \(\sqrt{3} + i\) E) NOTA

13) Which of the following is equivalent to \(i^{2002}\).

A) \(-1\) B) \(-i\) C) \(i\) D) 1 E) NOTA

14) Describe the nature of the solutions for the equation: \(x^4 + 2x^3 + 3x^2 + 2x + 1 = 0\)

A) 0 Real, 2 Repeated Complex Non-Real C) 4 Real, 4 Complex Non-Real E) NOTA
B) 2 Real, 2 Complex Non-Real D) 4 Real, 0 Complex Non-Real
15) Evaluate \(\frac{2 \text{cis}(\pi)}{\text{cis}(\pi/2)} \)

A) \(-1\) B) \(-i\) C) \(i\) D) \(2i\) E) NOTA

16) For what values of \(\lambda\) will the function \(f(s) = 3s^2 - 5s + \lambda\) have two complex non-real roots? (Note: Assume \(\lambda \in \text{Reals}\))

A) \(\lambda > \frac{25}{12}\) B) \(\lambda > \frac{12}{25}\) C) \(\lambda > \frac{3}{5}\) D) \(\lambda > \frac{5}{3}\) E) NOTA

17) Solve the following: \(2x^2 + 4x - 12 = 0\).

A) \(7 \pm i\) B) \(1 \pm \sqrt{7}\) C) \(-1 \pm \sqrt{7}\) D) \(\sqrt{7}\) E) NOTA

18) Given that \(f(x) = \frac{6 + x}{x}, x \neq 0\) and \(f(\lambda) = 1 - 2i,\) find \(\lambda\).

A) \(-6i\) B) \(-3i\) C) \(3i\) D) \(6i\) E) NOTA

19) Which of the following is equivalent to \(5 \text{cis}(240^\circ)\)?

A) \(-\frac{5}{3} - \frac{5\sqrt{3}}{3}i\) B) \(-\frac{5}{2} - \frac{5\sqrt{3}}{2}i\) C) \(-\frac{7}{2} - \frac{7\sqrt{3}}{2}i\) D) \(-\frac{3}{2} - \frac{3\sqrt{3}}{2}i\) E) NOTA

20) If \(A = \{x : x \notin \text{Complex Numbers}\}\), which of the following could not be a member of \(A\)?

I) \(\sqrt{3}\) II) \(\frac{22}{7}\) III) \(-17.3\) IV) \(\sqrt{-3}\) A) All are members of \(A\) B) None are members of \(A\) C) IV only D) III & IV only E) NOTA

21) Which of the following yields an imaginary result given that \(f(x) = \sqrt{16x - 9}\) and \(g(x) = \sqrt{-2x + 5}\)

A) \(f(g(2))\) B) \(g(f(7))\) C) \(f(g(0))\) D) \(f(f(3)))\) E) NOTA
22) If \(f(x) \) is a quadratic function with two non-equal real roots, how many times does the graph of \(f(x) \) cross the \(x \)-axis? \(\text{(Note: Assume } x \in \text{Reals} \)\)

A) 0 B) 1 C) 2 D) Situation Impossible E) NOTA

23) Given the two relations \(f(x,y) = xi + yx \) and \(g(v,w) = -vwi \). Find \(f(g(2,1), f(1,1)) \).

A) 2 + 2i B) 4 + 2i C) 4 – 2i D) 2 – 2i E) NOTA

24) Which of the following is equivalent to \(\frac{3+i}{2-i} \)?

A) \(-1 - i \) B) \(1 - i \) C) \(-1 + i \) D) \(1 + i \) E) NOTA

25) \(\sum_{n=1}^{7} \left[(-1)^n \left[(-i)^n \right] \right] \)

A) \(-1\) B) \(-i\) C) \(i\) D) \(1\) E) NOTA

26) Which of the following is the correct expansion for \(\text{cis}(x) \)?

A) \(\cos(x) - \sin(x) \) B) \(\cos(x) + i\sin(x) \) C) \(i\cos(x)\sin(x) \) D) \(\sin(x) + i\cos(x) \) E) NOTA

27) Which of the following sets is a subset of the imaginary number set?

A) Reals B) Complex C) Rational D) Hypothetical E) NOTA

28) If \(ai + b = -(3i + 2)(2i - 1)(3 + i) \). Find \(a + b \).

A) \(-30\) B) \(-25\) C) \(5\) D) \(30\) E) NOTA

29) Find the sum of the first 7 terms of the geometric sequence \(i, i - 1, -2, \ldots \)

A) \(7 + 8i\) B) \(7 - 8i\) C) \(8 + 7i\) D) \(8 - 7i\) E) NOTA

30) Which quadrant of the Argand plane contains the point \(\text{cis}(30^\circ) \)?

A) I B) II C) III D) IV E) NOTA