1. How many points of inflection does the graph of \(y = 2x + \cos(x^2) \) have in the interval \((0, 5)\)?

2. The graph of part of a linear function \(f \) is given. Each tick mark represents a unit of 1. Find \(h'(1) \) if \(h(x) = \sqrt{f(x)} + x^2 \).

3. Water flowed into a tank at an increasing rate \(r(t) \) from \(t = 0 \) to \(t = 10 \). The rate of flow \(r(t) \) in \(\text{m}^3/\text{min} \) was measured at one minute intervals with the results shown in the table below.

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(t))</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>32</td>
</tr>
</tbody>
</table>

Use Riemann sums with **five rectangles** to estimate the total amount of water that flowed into the tank. Let \(A \) be the left rectangular approximation. Let \(B \) be the right rectangular approximation. Let \(C \) be the midpoint rectangular approximation. Find \(A + B + C \).

4. Let \(R \) be the region in the first quadrant enclosed by \(y = 5 - x^3 \), \(y = -\cos(x) + 1 \), and \(x = 0 \). To the nearest thousandth find the volume of the solid generated when \(R \) is revolved about the \(x \)-axis.

5. List the letters of the functions that are differentiable at \(x = 0 \).

 \(A) \ y = |x^2 - 3x| \quad B) \ y = |x^3 - 4x^2| \quad C) \ y = \sqrt{x^2 + 0.01} - |x - 1| \)

 \(D) \ y = \sin^2(x) \quad E) \ y = \frac{e^x}{\cos(x)} \quad F) \ y = \sqrt{x^2 + 0.01 - 0.01} \)

6. \(f'(x) = ax^2 + bx \). At \(x = 2 \) the normal is parallel to \(x - 4y = 2 \). \(f''(2) = 10 \). Find \(f'(1) \).

7. A meteorologist determines that the temperature \(T \) (in \(^\circ\)F) on a cold winter day is given by \(T = \frac{1}{20} t(t-12)(24-t) \), where \(t \) is time (in hours) and \(t = 0 \) corresponds to midnight.

 To the nearest thousandth let \(A \) be the average temperature between 7 a.m. and 12 noon.

 To the nearest hour (after midnight), let \(B \) be the hour when the temperature is increasing at the fastest rate.

 To the nearest thousandth let \(C \) be the highest temperature attained during the day.

 To the nearest thousandth let \(D \) be the average rate of change in the temperature from 6 a.m. to 1 p.m. Find \(A + B + C + D \).

8. Let \(A(w) \) be the area in square centimeters of the region in the first quadrant enclosed by the \(x \)-axis and the graph of \(f(x) = 36x^2 - 18x^3 \) between \(x = 0 \) and \(x = w \), \(0 < w < 2 \). If \(w \) moves right at a constant rate of 0.04 cm/s, how fast is \(A(w) \) changing in cm\(^2\)/s, when \(w = 0.5? \).
9. A target is in the shape of a closed polygon whose area is equal to that bounded by \(y = 4 \ln(x) \) and \(y = 1.5x - 2 \). Painted on the polygon is a red shape whose area is equal to that bounded by \(x = 0, y = e^x \) and \(y = 2 \cos(x) \) in quadrant 1. If a randomly thrown dart hits the polygon what is the probability to the nearest thousandth that it lands in the red area?

10. Use the local linearization of \(x^4 + x \tan(y) = 16, \ -\frac{\pi}{2} < y < \frac{\pi}{2} \) at \(x = 2 \) to estimate the value of \(y \) at \(x = 2.1 \).

\[
\begin{align*}
11. \quad f(x) &= \begin{cases}
(x + 2)^2 - 2, & -4 \leq x \leq -2 \\
-x, & -2 < x < 0 \\
\tan(x), & 0 \leq x \leq \frac{\pi}{4} \\
e^{-x - \frac{\pi}{4}}, & \frac{\pi}{4} < x \leq 3
\end{cases}
\end{align*}
\]

Find the area bounded by \(f \) and the x-axis to the nearest thousandth.

12. List the letters of the statements that are true.
 A) If \(f \) is a one to one function then \(f \) is always increasing or always decreasing throughout its domain.
 B) A critical value of \(f \) occurs only when \(f'(x) = 0 \).
 C) If \(u = 2x \), then \(\int_0^a \sin(2x) \, dx = \frac{1}{2} \int_0^{2a} \sin(u) \, du \).
 D) If \(f \) and \(g \) are even functions then \(\int_{-a}^{a} [f(x) + g(x)] \, dx = 2 \int_0^a [f(x) + g(x)] \, dx \).
 E) If the velocity of a particle moving along the x-axis is \(v(t) = \sin(t) \), then to the nearest thousandth the total distance traveled from \(t = 0 \) to \(t = 4 \) is 2.346.
 F) A particle moving rectilinearly along the x-axis having velocity \(v(t) = \frac{1}{1+t^2} \), \(t \geq 0 \), starting at \((4, 0) \) when \(t = 0 \) has an x-coordinate of \(\ln 8 \) when \(t = 7 \).

13. A rectangle has its base on the x-axis and its upper vertices on the parabola \(y = 16 - x^2 \). What is the largest area the rectangle can have?

14. \(\int_1^5 f(x) \, dx = 3 \). Find \(\int_1^5 [2(f(x) + x^2) \, dx - \int_1^5 [3f(x) - x + 4] \, dx \)

15. Find the area bounded by \(x = -y^3 + 2y + 4 \) and \(x = y^2 - 2y \).