1 When \(p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4 \) is divided by which factor is the remainder the greatest?

a. \((x - 1)\)
b. \((x + 1)\)
c. \((x - 2)\)
d. \((x - 3)\)

1 When \(p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4 \) is divided by which factor is the remainder the greatest?

a. \((x - 1)\)
b. \((x + 1)\)
c. \((x - 2)\)
d. \((x - 3)\)
2 Solve for x: $9x + 4 = 8^{1+\log_3 5}$

ANSWER:
2 Solve for x: $9x + 4 = 8^{1 + \log_5 5}$
3 As a cannonball travels through the air, its height in meters above the ground at t seconds is \(h(t) = -9.8(t - 10)^2 + 980 \).

For what time does this equation have physical meaning? Express answer in interval notation.
4 Find \(f''(-4) \) if
\[f(x) = x^4 - 3x^3 + 2x - 7 \]
5 Find the limit, if it exists.
\[
\lim_{x \to \infty} \frac{x^2 - 36}{x^2 + x - 30}
\]

5 Find the limit, if it exists.
\[
\lim_{x \to \infty} \frac{x^2 - 36}{x^2 + x - 30}
\]

CODE:

ANSWER:
6 A point is moving along the graph of \(y = \frac{1}{1 + x^2} \) so that \(\frac{dx}{dt} = 2 \) cm/min. Find \(\frac{dy}{dt} \) when \(x = -2 \).
7 How many terms are in the sequence
3, 7, 11, … , 39?

CODE:
ANSWER:
8 Solve for x:
\[
\left(2^{8x^2}\right)\left(2^{4x}\right)\left(2^{-2}\right) = \left(2^{2x^2}\right)\left(2^{5x}\right)
\]

\[
\left(2^{8x^2}\right)\left(2^{4x}\right)\left(2^{-2}\right) = \left(2^{2x^2}\right)\left(2^{5x}\right)
\]
9 Solve for x:
\[
\begin{vmatrix}
4 & x^2 & x \\
3 & 1 & 0 \\
-1 & -2 & 3 \\
\end{vmatrix} = 8
\]

CODE:

ANSWER:
10 Find \[\lim_{x \to \infty} \left(\frac{1}{x} + \frac{1}{x^2} + 1 \right) \]
11 Find $f'(x)$ if
\[f(x) = 3 \cos^2 5x \]
12 If the coefficient of the 5th and 6th terms in the expansion of \((x - y)^n\) are equal, find the 3rd term.
13 Find the dot product given
\[\vec{v} = -3i + 4j - 7k \quad \text{and} \quad \vec{w} = 3i - 6j - 3k. \]
14 Simplify:

\[
\frac{q!(q-3)!}{(q-5)!(q+2)!}
\]

14 Simplify:

\[
\frac{q!(q-3)!}{(q-5)!(q+2)!}
\]
15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

15 Find the mean of the first \textit{500,000} odd numbers.

CODE:

ANSWER:

The height, \(h \) in meters, of a projectile launched from under water is given by the portion of the curve of \(h(t) = -t^5 - 2t^4 + 10t^3 + 20t^2 - 9t - 18 \) where \(t \geq 0 \), \(t \) is in seconds. At what time does the projectile leave the water?

\[
54 + 3t + 2t^2 - 0t - 221 + 0t - t = 0
\]

\[
8 - 8t = 0
\]
17 Solve and express the answer in interval notation:

\[(x + 4)^2 (x - 1)^2 (x + 7)^2 > 0\]
18 If
\[f'(x) = -8(x-1)^3(x+2)(x-3)^7(x+1)^4 \]
at which \(x \) intercept does the function just touch the \(x \)-axis?

18 If
\[f(x) = -8(x-1)^3(x+2)(x-3)^7(x+1)^4 \]
at which \(x \) intercept does the function just touch the \(x \)-axis?
19 Which of the functions are even?
I. \(y = 3x^2 \)
II. \(y = 5x^4 - 4 \)
III. \(y = 4x^2 + 8x + 4 \)
IV. \(y = x^4 + 3x^2 + 7 \)
V. \(y = \cos 5x \)
State the domain for $f(x)$ in interval form if $f(x) = \sqrt{4 - x^2}$
21 What test would be used to prove convergence of the series \(\sum_{n=1}^{\infty} \frac{1}{n^5} \)
22 A particle is moving along a horizontal line according to the equation
\[s(t) = 2t^3 - 4t^2 + 2t - 1. \] Find the velocity at the instant \(t = 3 \) seconds.

CODE:

ANSWER:
23 Find $\int \sin \frac{1}{3} x \, dx$

CODE:

ANSWER:
24 Solve for x: $\ln x + \ln (x - 2) = 3 \ln 2$

24 Solve for x: $\ln x + \ln (x - 2) = 3 \ln 2$

CODE:

ANSWER:
25 Exactly evaluate: \(\int_0^2 x e^{3x^2} \, dx \).

25 Exactly evaluate: \(\int_0^2 x e^{3x^2} \, dx \).

25 Exactly evaluate: \(\int_0^2 x e^{3x^2} \, dx \).

25 Exactly evaluate: \(\int_0^2 x e^{3x^2} \, dx \).

25 Exactly evaluate: \(\int_0^2 x e^{3x^2} \, dx \).

25 Exactly evaluate: \(\int_0^2 x e^{3x^2} \, dx \).