1 When $p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ is divided by which factor is the remainder the greatest?

a.
$$(x-1)$$
 b. $(x+1)$ c. $(x-2)$ d. $(x-3)$

1 When $p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ is divided by which factor is the remainder the greatest?

a.
$$(x-1)$$
 b. $(x+1)$ c. $(x-2)$ d. $(x-3)$

CODE:	CODE:
ANSWER:	ANSWER:

1 When $p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ is divided by which factor is the remainder the greatest?

a.
$$(x-1)$$
 b. $(x+1)$ c. $(x-2)$ d. $(x-3)$

1 When $p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ is divided by which factor is the remainder the greatest?

a.
$$(x-1)$$
 b. $(x+1)$ c. $(x-2)$ d. $(x-3)$

CODE: CODE: ANSWER: ANSWER:

		_						
#	2	Sol	Ve	for	v.	$9r \pm$	4 –	$8^{1+\log_8 5}$

ANSWER:

2 Solve for x: $9x + 4 = 8^{1 + \log_8 5}$

CODE:

ANSWER:

2 Solve for x: $9x + 4 = 8^{1 + \log_8 5}$

CODE:

CODE:

ANSWER:

2 Solve for x: $9x + 4 = 8^{1 + \log_8 5}$

CODE: ANSWER:

NMAθ Hustle 2002 NMAθ Hustle 2002

3 As a cannonball travels through the air, its height in meters above the ground at t seconds is $h(t) = -9.8(t-10)^2 + 980$. For what time does this equation have physical meaning? Express answer in interval notation.

3 As a cannonball travels through the air, its height in meters above the ground at t seconds is $h(t) = -9.8(t-10)^2 + 980$. For what time does this equation have physical meaning? Express answer in interval notation.

CODE:	CODE:
ANSWER:	ANSWER:

3 As a cannonball travels through the air, its height in meters above the ground at t seconds is $h(t) = -9.8(t-10)^2 + 980$. For what time does this equation have physical meaning? Express answer in interval notation.

3 As a cannonball travels through the air, its height in meters above the ground at t seconds is $h(t) = -9.8(t-10)^2 + 980$. For what time does this equation have physical meaning? Express answer in interval notation.

CODE:	CODE:
ANSWER:	ANSWER:

4 Find
$$f''(-4)$$
 if $f(x) = x^4 - 3x^3 + 2x - 7$

4 Find
$$f''(-4)$$
 if $f(x) = x^4 - 3x^3 + 2x - 7$

CODE:	CODE:	
ANSWER:	ANSWER:	

4 Find
$$f''(-4)$$
 if $f(x) = x^4 - 3x^3 + 2x - 7$

4 Find
$$f''(-4)$$
 if $f(x) = x^4 - 3x^3 + 2x - 7$

CODE: CODE: ANSWER: ANSWER:

NMAθ Hustle 2002 NMAθ Hustle 2002

5 Find the limit, if it exists.

$$\lim_{x \to -6} \frac{x^2 - 36}{x^2 + x - 30}$$

5 Find the limit, if it exists.

$$\lim_{x \to -6} \frac{x^2 - 36}{x^2 + x - 30}$$

ANSWER: ANSWER:

5 Find the limit, if it exists.
$$\lim_{x \to -6} \frac{x^2 - 36}{x^2 + x - 30}$$

5 Find the limit, if it exists.

$$\lim_{x \to -6} \frac{x^2 - 36}{x^2 + x - 30}$$

CODE: CODE:

ANSWER: ANSWER: # 6 A point is moving along the graph of $y = \frac{1}{1+x^2}$ so that $\frac{dx}{dt} = 2$ cm/min. Find $\frac{dy}{dt}$ when x = -2.

6 A point is moving along the graph of $y = \frac{1}{1+x^2}$ so that $\frac{dx}{dt} = 2$ cm/min. Find $\frac{dy}{dt}$ when x = -2.

CODE:

ANSWER:

CODE:

ANSWER:

6 A point is moving along the graph of $y = \frac{1}{1+x^2}$ so that $\frac{dx}{dt} = 2$ cm/min. Find $\frac{dy}{dt}$ when x = -2.

6 A point is moving along the graph of $y = \frac{1}{1+x^2}$ so that $\frac{dx}{dt} = 2$ cm/min. Find $\frac{dy}{dt}$ when x = -2.

CODE:

ANSWER:

CODE:

ANSWER:

# 7 How many terms are in the sequence 3, 7, 11,, 39 ?	# 7 How many terms are in the sequence 3, 7, 11,, 39 ?
CODE:	CODE:
ANSWER:	ANSWER:
# 7 How many terms are in the sequence 3, 7, 11,, 39 ?	# 7 How many terms are in the sequence 3, 7, 11,, 39 ?
CODE: ANSWER:	CODE: ANSWER:

NMAθ Hustle 2002 NMAθ Hustle 2002

8 Solve for x:

 $(2^{8x^2})(2^{4x})(2^{-2}) = (2^{2x^2})(2^{5x})$

8 Solve for x:

$$(2^{8x^2})(2^{4x})(2^{-2}) = (2^{2x^2})(2^{5x})$$

CODE: CODE:

ANSWER: ANSWER:

8 Solve for x: $(2^{8x^2})(2^{4x})(2^{-2}) = (2^{2x^2})(2^{5x})$ # 8 Solve for x: $(2^{8x^2})(2^{4x})(2^{-2}) = (2^{2x^2})(2^{5x})$

CODE: CODE: ANSWER: ANSWER:

NMAθ Hustle 2002 NMAθ Hustle 2002 # 9 Solve for x:

$$\begin{vmatrix} 4 & x^2 & x \\ 3 & 1 & 0 \\ -1 & -2 & 3 \end{vmatrix} = 8$$

9 Solve for x:

$$\begin{vmatrix} 4 & x^2 & x \\ 3 & 1 & 0 \\ -1 & -2 & 3 \end{vmatrix} = 8$$

CODE: CODE:

ANSWER: ANSWER:

9 Solve for x:

$$\begin{vmatrix} 4 & x^2 & x \\ 3 & 1 & 0 \\ -1 & -2 & 3 \end{vmatrix} = 8$$

9 Solve for x:

$$\begin{vmatrix} 4 & x^2 & x \\ 3 & 1 & 0 \\ -1 & -2 & 3 \end{vmatrix} = 8$$

CODE: CODE:

ANSWER: ANSWER:

10 Find
$$\lim_{x \to \infty} \left(\frac{1}{x} + \frac{1}{x^2} + 1 \right)$$

10 Find
$$\lim_{x \to \infty} \left(\frac{1}{x} + \frac{1}{x^2} + 1 \right)$$

CODE: CODE:

ANSWER: ANSWER:

10 Find
$$\lim_{x\to\infty} \left(\frac{1}{x} + \frac{1}{x^2} + 1 \right)$$

10 Find
$$\lim_{x \to \infty} \left(\frac{1}{x} + \frac{1}{x^2} + 1 \right)$$

CODE: CODE:

ANSWER: ANSWER:

11 Find f'(x) if $f(x) = 3\cos^2 5x$

11 Find f'(x) if $f(x) = 3\cos^2 5x$

CODE: CODE:

ANSWER: ANSWER:

11 Find f'(x) if $f(x) = 3\cos^2 5x$

11 Find f'(x) if $f(x) = 3\cos^2 5x$

CODE: CODE: ANSWER: ANSWER:

12 If the coefficient of the 5th and 6th terms in the expansion of $(x-y)^n$ are equal, find the 3rd term.

12 If the coefficient of the 5th and 6th terms in the expansion of $(x-y)^n$ are equal, find the 3rd term.

CODE:	CODE:
ANSWER:	ANSWER:

12 If the coefficient of the 5th and 6th terms in the expansion of $(x-y)^n$ are equal, find the 3rd term.

12 If the coefficient of the 5th and 6th terms in the expansion of $(x-y)^n$ are equal, find the 3rd term.

CODE:	CODE:
ANSWER:	ANSWER:

# 13	Find the dot product given
$\vec{v} = -$	3i+4j-7k and
$\vec{w} = 3$	3i-6j-3k.

13 Find the dot product given $\vec{v} = -3i + 4j - 7k$ and $\vec{w} = 3i - 6j - 3k$.

CODE:	CODE:
ANSWER:	ANSWER:

13 Find the dot product given $\vec{v} = -3i + 4j - 7k$ and $\vec{w} = 3i - 6j - 3k$.

13 Find the dot product given $\vec{v} = -3i + 4j - 7k$ and $\vec{w} = 3i - 6j - 3k$.

CODE: CODE: ANSWER: ANSWER:

NMAθ Hustle 2002 NMAθ Hustle 2002

14 Simplify:

14 Simplify:

$$\frac{q!(q-3)!}{(q-5)!(q+2)!}$$

$$\frac{q!(q-3)!}{(q-5)!(q+2)!}$$

CODE:

CODE:

ANSWER:

ANSWER:

14 Simplify:

14 Simplify:

$$\frac{q!(q-3)!}{(q-5)!(q+2)!}$$

$$\frac{q!(q-3)!}{(q-5)!(q+2)!}$$

CODE:

CODE:

ANSWER:

ANSWER:

# 15 Find the mean of the first 500,000 odd numbers.	# 15 Find the mean of the first 500,000 odd numbers.
CODE:	CODE:
ANSWER:	ANSWER:
# 15 Find the mean of the first 500,000 odd numbers.	# 15 Find the mean of the first 500,000 odd numbers.
CODE:	CODE:
ANSWER:	a) ANSWER:

16 The height, h in meters, of a projectile launched from under water is given by the portion of the curve of $h(t) = -t^5 - 2t^4 + 10t^3 + 20t^2 - 9t - 18$ where $t \ge 0$, t is in seconds. At what time does the projectile leave the water?

16 The height, h in meters, of a projectile launched from under water is given by the portion of the curve of $h(t) = -t^5 - 2t^4 + 10t^3 + 20t^2 - 9t - 18$ where $t \ge 0$, t is in seconds. At what time does the projectile leave the water?

CODE:	CODE:
ANSWER:	ANSWER:

16 The height, h in meters, of a projectile launched from under water is given by the portion of the curve of $h(t) = -t^5 - 2t^4 + 10t^3 + 20t^2 - 9t - 18$ where $t \ge 0$, t is in seconds. At what time does the projectile leave the water?

16 The height, h in meters, of a projectile launched from under water is given by the portion of the curve of $h(t) = -t^5 - 2t^4 + 10t^3 + 20t^2 - 9t - 18$ where $t \ge 0$, t is in seconds. At what time does the projectile leave the water?

CODE:	CODE:
ANSWER:	ANSWER:

17 Solve and express the answer in interval notation:

$$(x+4)^{2}(x-1)^{2}(x+7)^{2} > 0$$

17 Solve and express the answer in interval notation:

$$(x+4)^{2}(x-1)^{2}(x+7)^{2} > 0$$

CODE:	CODE:
ANSWER:	ANSWER:

17 Solve and express the answer in interval notation:

$$(x+4)^{2}(x-1)^{2}(x+7)^{2} > 0$$

17 Solve and express the answer in interval notation:

$$(x+4)^{2}(x-1)^{2}(x+7)^{2} > 0$$

CODE: CODE: ANSWER: ANSWER:

NMA0 Hustle 2002 NMA0 Hustle 2002

18 If $f(x) = -8(x-1)^3(x+2)(x-3)^7(x+1)^4$ at which x intercept does the function just touch the x- axis?

18 If $f(x) = -8(x-1)^3(x+2)(x-3)^7(x+1)^4$ at which x intercept does the function just touch the x- axis?

CODE:	CODE:
ANSWER:	ANSWER:

18 If $f(x) = -8(x-1)^3(x+2)(x-3)^7(x+1)^4$ at which x intercept does the function just touch the x – axis?

18 If $f(x) = -8(x-1)^3(x+2)(x-3)^7(x+1)^4$ at which x intercept does the function just touch the x- axis?

CODE:	CODE:
ANSWER:	ANSWER:

19 Which of the functions are even?

I.
$$y = 3x^2$$

II.
$$y = 5x^4 - 4$$

III.
$$y = 4x^2 + 8x + 4$$

IV.
$$y = x^4 + 3x^2 + 7$$

$$V. y = \cos 5x$$

19 Which of the functions are even?

I.
$$y = 3x^2$$

II.
$$y = 5x^4 - 4$$

III.
$$y = 4x^2 + 8x + 4$$

IV.
$$y = x^4 + 3x^2 + 7$$

$$V. \quad y = \cos 5x$$

CODE:
ANSWER:
ANSWER:

19 Which of the functions are even?

I.
$$y = 3x^2$$

II.
$$y = 5x^4 - 4$$

III.
$$y = 4x^2 + 8x + 4$$

IV.
$$y = x^4 + 3x^2 + 7$$

$$V. \quad y = \cos 5x$$

19 Which of the functions are even?

I.
$$y = 3x^2$$

II.
$$y = 5x^4 - 4$$

III.
$$y = 4x^2 + 8x + 4$$

IV.
$$y = x^4 + 3x^2 + 7$$

$$V. \quad y = \cos 5x$$

CODE: CODE:

ANSWER: ANSWER:

# 20	State the domain for	f(x)	in interval
form	if $f(x) = \sqrt{4 - x^2}$		

20 State the domain for f(x) in interval form if $f(x) = \sqrt{4 - x^2}$

CODE:	CODE:
ANSWER:	ANSWER:

20 State the domain for f(x) in interval form if $f(x) = \sqrt{4 - x^2}$

20 State the domain for f(x) in interval form if $f(x) = \sqrt{4 - x^2}$

CODE: CODE: ANSWER: ANSWER:

# 21	What test would be	used to prove
conve	ergence of the series	$\sum_{n=1}^{\infty} \frac{1}{n^5}$

21 What test would be used to prove convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$

CODE:	CODE:
ANSWER:	ANSWER:

21 What test would be used to prove convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$

21 What test would be used to prove convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$

CODE:	CODE:
ANSWER:	ANSWER:

NMA0 Hustle 2002 NMA0 Hustle 2002

22 A particle is moving along a horizontal line according to the equation $s(t) = 2t^3 - 4t^2 + 2t - 1$. Find the velocity at the instant t = 3 seconds.

22 A particle is moving along a horizontal line according to the equation $s(t) = 2t^3 - 4t^2 + 2t - 1$. Find the velocity at the instant t = 3 seconds.

_CODE:	CODE:
ANSWER:	ANSWER:

22 A particle is moving along a horizontal line according to the equation $s(t) = 2t^3 - 4t^2 + 2t - 1$. Find the velocity at the instant t = 3 seconds.

22 A particle is moving along a horizontal line according to the equation $s(t) = 2t^3 - 4t^2 + 2t - 1$. Find the velocity at the instant t = 3 seconds.

CODE:	CODE:
ANSWER:	ANSWFR.

23 Find
$$\int \sin \frac{1}{3} x \ dx$$

23 Find
$$\int \sin \frac{1}{3} x \ dx$$

ANSWER: ANSWER:

23 Find
$$\int \sin \frac{1}{3} x \ dx$$

23 Find
$$\int \sin \frac{1}{3} x \ dx$$

CODE: CODE:

ANSWER: ANSWER:

 $NMA\theta$ Hustle 2002 NMA0 Hustle 2002

# 24	Solve for x:	$\ln x + \ln (x)$	$2) - 2 \ln 2$
# 24	Solve for x:	$\ln x + \ln (x -$	- 2) = 3 in 2

24 Solve for x: $\ln x + \ln(x-2) = 3\ln 2$

CODE: CODE:

ANSWER: ANSWER:

24 Solve for x: $\ln x + \ln(x-2) = 3\ln 2$

24 Solve for x: $\ln x + \ln(x-2) = 3\ln 2$

CODE: CODE: ANSWER: ANSWER:

# 25	Exactly evaluate:	$\int_{0}^{2} x e^{3x^{2}}$	dx
------	-------------------	-----------------------------	----

25 Exactly evaluate: $\int_0^2 x \ e^{3x^2} \ dx$.

CODE:	CODE:
ANCWED.	

ANSWER: ANSWER:

25 Exactly evaluate:
$$\int_0^2 x e^{3x^2} dx$$
.

25 Exactly evaluate: $\int_0^2 x \ e^{3x^2} \ dx$.

CODE: ANSWER: ANSWER:

NMA0 Hustle 2002 NMA0 Hustle 2002