Round # _____

NMA0 2002 ALPHA School Bowl

Round # _____

A = _____ A B = _____ B C = _____ C =

A = _____ B = _____ C = _____

Final answer:

Final answer:

CODE: _____

CODE: _____

Round 1

Part 1

A football team's scores as a function of practice time (in hours) is modeled by $y = -0.05x^2 + 2x + 7$. What is the optimum number of hours for them to practice?

A = the optimum number of hours

NMA0 2002 ALPHA School Bowl

Round 1

Part 1

A football team's scores as a function of practice time (in hours) is modeled by $y = -0.05x^2 + 2x + 7$. What is the optimum number of hours for them to practice?

A = the optimum number of hours

Part 2

Given
$$y = \frac{4}{3}\sin\left(x + \frac{3\pi}{5}\right) - \frac{2\pi}{3}$$

B = the denominator of the sum of the period and the phase shift

Part 2

Given
$$y = \frac{4}{3}\sin\left(x + \frac{3\pi}{5}\right) - \frac{2\pi}{3}$$

B = the denominator of the sum of the period and the phase shift

Part 3 At what x values, if any, does the function $f(x) = \frac{x^2 - 9}{x^2 + 7x + 12}$, have a vertical asymptote?

C = {
 the x value of the asymptote
 the sum of the x values of the asymptotes
 nothing, if there are no vertical asymptote(s)

Part 3

At what x values, if any, does the function

$$f(x) = \frac{x^2 - 9}{x^2 + 7x + 12}$$
, have a vertical asymptote?

C = { the x value of the asymptote the sum of the x values of the asymptotes nothing, if there are no vertical asymptote(s)

Final answer =
$$\frac{A}{B} + C$$

Final answer =
$$\frac{A}{B} + C$$

Round 2

Part 1 Solve the inequality. Write answer in interval notation.

 $x^{3} + x^{2} - x - 1 > 0$

A = lower bound of the interval

NMA0 2002 ALPHA School Bowl

Round 2

Part 1 Solve the inequality. Write answer in interval notation.

 $x^3 + x^2 - x - 1 > 0$

A = lower bound of the interval

Part 2

A stunt driver drives a car over cliff into the sea. The car falls 4.9 m in the first second, 14.7 m in the second and 24.5 m in the third second, etc.

B = the number meters the car falls in the 6^{th} second

Part 2

A stunt driver drives a car over cliff into the sea. The car falls 4.9 m in the first second, 14.7 m in the second and 24.5 m in the third second, etc.

 $\mathsf{B}=\mathsf{the}$ number meters the car falls in the $\mathsf{6}^\mathsf{th}$ second

Part 3 Evaluate:

		-	1	-2	-3	0		
$\begin{vmatrix} -3\\1 \end{vmatrix}$	2		-1	1 2	0	2		
1	5	+	0	2	0	3		
			3	4	0	2		
C = sum of the determinants								

Part 3 Evaluate:

zvalu	late	•				
			1	-2	-3	0
-3	2		-1	-2 1 2 4	0	2
1	5	+	0	2	0	3
			3	4	0	2

C = sum of the determinants

Final: A + B + C

Final:
$$A+B+C$$

Round 3

Part 1 Given $f(x) = 5x - x^2$, find $\frac{f(5+h) - f(5)}{h}$ A = constant in the expression NMA0 2002 ALPHA School Bowl

Round 3

Part 1 Given $f(x) = 5x - x^2$, find $\frac{f(5+h) - f(5)}{h}$ A = constant in the expression

Part 2

Find the equation of a parabola in general form if the parabola passes through the points A (-1,5), B (0, -1) and C (2, -1).

B = sum of the coefficients

Part 2

Find the equation of a parabola in general form if the parabola passes through the points A (-1,5), B (0, -1) and C (2, -1).

B = sum of the coefficients

Part 3

The one real zero of the function $f(x)=3x^3-7x^2-7x-10$ lies between what two consecutive integers?

C = product of the two integers

Final: |A| + |B| - C

Part 3

The one real zero of the function $f(x)=3x^3-7x^2-7x-10$ lies between what two consecutive integers?

C = product of the two integers

Final:
$$|A| + |B| - C$$

Round 4

Part 1 Solve for $x: 8(2^{3x+1}) = (4^{3-x})(16^x)$

A = x

NMA0 2002 ALPHA School Bowl Round 4 Part 1 Solve for $x: 8(2^{3x+1}) = (4^{3-x})(16^x)$ A = x

Part 2 Find the exact solution set of the equation: $\log_4(x+12) = 4 - \log_4(x-12)$

B = x

Part 2 Find the exact solution set of the equation: $\log_4(x+12) = 4 - \log_4(x-12)$

B = x

Part 3 Solve for x on the interval $[0, 2\pi)$ if $\cos x + \sin x \tan x = 2$.

C = largest solution

Part 3 Solve for x on the interval $[0, 2\pi)$ if $\cos x + \sin x \tan x = 2$.

C = largest solution

Fi $(B\pi)$

Final:
$$12C\left(\frac{A}{B\pi}\right)$$

inal:
$$12C\left(\frac{A}{B\pi}\right)$$

Round 5

Part 1 In the expansion of $(t-p)^8$, what is the coefficient of the term containing t^2 ?

A = coefficient

NMA0 2002 ALPHA School Bowl

Round 5

Part 1

In the expansion of $(t-p)^8$, what is the coefficient of the term containing t^2 ?

A = coefficient

Part 2

Fourteen people are entered into a race. Assuming no ties, how many ways could the first three places be awarded?

B = number of ways

Part 2

Fourteen people are entered into a race. Assuming no ties, how many ways could the first three places be awarded?

B = number of ways

Part 3

The average of five students' test scores is 68. When the highest and lowest scores are eliminated, the average of the remaining scores is 72.

C = the average of the eliminated scores

Part 3

The average of five students' test scores is 68. When the highest and lowest scores are eliminated, the average of the remaining scores is 72.

C = the average of the eliminated scores

Final: $\frac{B}{A} - C$

Final:
$$\frac{B}{A} - C$$

Round 6

Part 1

$$\log_x \frac{1}{\sqrt{3}} = -\frac{1}{2}$$

$$A = x$$

NMA
$$\theta$$
 2002
ALPHA School Bowl
Round 6
Part 1
 $\log_x \frac{1}{\sqrt{3}} = -\frac{1}{2}$
A = x

Part 2 Given $x^2 + 4y + 17 = 10x - y^2$, find the center and radius. Part 2 Given $x^2 + 4y + 17 = 10x - y^2$, find the center and radius.

B = sum of the center coordinates

B = sum of the center coordinates

Part 3

A water wave is created in a wave tank. It has an amplitude of 3 and a period of

 $\frac{2\pi}{3}$. Express the equation of the wave as a sine function.

C = sum of all the constants in the equation (hint: **A**sin(**B**x+**C**)+**D**=y)

Part 3

A water wave is created in a wave tank. It has an amplitude of 3 and a period of

 $\frac{2\pi}{3}$. Express the equation of the wave as a sine function.

C = sum of all the constants in the equation (hint: **A**sin(**B**x+**C**)+**D**=y)

Final: $B^A - C$

Final: $B^A - C$

Round 7

Part 1 Malone found the equation $h=-25(t-2)^2+100$ gave the height h (in feet) of his model rocket t seconds after it has been launched.

A = time the rocket was in the air

NMA0 2002 ALPHA School Bowl

Round 7

Part 1 Malone found the equation $h=-25(t-2)^2+100$ gave the height h (in feet) of his model rocket t seconds after it has been launched.

A = time the rocket was in the air

Part 2

In the food chain, barracuda feed on bass and bass feed on shrimp. Suppose that the size of the barracuda population is estimated by the function

 $r(x)=1000 + \sqrt{20x}$, where x is the size of the bass population. Also suppose that the bass population is estimated by the function $s(x)=2500+\sqrt{x}$, where x is the size of the shrimp population.

B = barracuda population when the shrimp population is 4,000,000

Part 2

In the food chain, barracuda feed on bass and bass feed on shrimp. Suppose that the size of the barracuda population is estimated by the function $r(x)=1000 + \sqrt{20x}$, where x is the size of the bass population. Also suppose that the bass population is estimated by the

function $s(x)=2500+\sqrt{x}$, where x is the size of the shrimp population.

B = barracuda population when the shrimp population is 4,000,000

Part 3
Given
$$f(x) = \frac{x+5}{x-5}$$
 and $f(x) = -3$

C = x when f(x) = -3

Part 3 Given $f(x) = \frac{x+5}{x-5}$ and f(x) = -3C = x when f(x) = -3

Final: $\frac{B}{A(C)}$

Final:
$$\frac{B}{A(C)}$$

Round 8

Part 1 Evaluate exactly: $\sin^2 20^\circ + \frac{1}{\sec^2 20^\circ} + \frac{1}{\cos^2 40^\circ} - \tan^2 40^\circ$

A = answer

NMA0 2002 ALPHA School Bowl

Round 8

Part 1 Evaluate exactly: $\sin^2 20^\circ + \frac{1}{\sec^2 20^\circ} + \frac{1}{\cos^2 40^\circ} - \tan^2 40^\circ$

A = answer

Part 2Part 2Find the exact value for $\sin \theta$ ifFind the exact value for $\sin \theta$ if $\cos \theta = -\frac{3}{4}$ and θ is in quadrant III $\cos \theta = -\frac{3}{4}$ and θ is in quadrant III $B = \sin \theta$ $B = \sin \theta$

Part 3

Part 3

Suppose that $\sin \theta + \cos \theta = 1.2$ What is the value of $\sin 2\theta$?

C = answer

Suppose that $\sin \theta + \cos \theta = 1.2$ What is the value of $\sin 2\theta$? C = answer

Final: $25C - B^{-A}$

Final: $25C - B^{-A}$

Round 9

Part 1

Solve the system: $\begin{cases} x+y=2\\ x+y^2=4 \end{cases}$

A = sum of all the coordinates of all the points of intersection

NMA
$$\theta$$
 2002
ALPHA School Bowl
Round 9
Part 1
Solve the system:
$$\begin{cases} x + y = 2\\ x + y^2 = 4 \end{cases}$$

A = sum of all the coordinates of all the points of intersection

Part 2

A red die and a blue die are rolled simultaneously. What is the probability that the red die shows a larger number than the blue die?

> B = denominator - numerator (in lowest terms)

Part 2

A red die and a blue die are rolled simultaneously. What is the probability that the red die shows a larger number than the blue die?

B = denominator - numerator (in lowest terms)

Part 3

Let f(x) = 3x + 1 and g(x) = 2x + 5

Then f(g(x)) - g(f(x)) = ?

C = answer

Final: 6A - 4B + C

Part 3

Let f(x) = 3x + 1 and g(x) = 2x + 5Then f(g(x)) - g(f(x)) = ?

C = answer

Final: 6A - 4B + C

Round 10

Part 1

$$x^4 - 8x^3 + 17x^2 - 18x + 6 = (x^2 + ax + 2)(x^2 + bx + 3)$$

A = the value of ab

NMA0 2002 ALPHA School Bowl

Round 10

Part 1

$$x^4 - 8x^3 + 17x^2 - 18x + 6 =$$

 $(x^2 + ax + 2)(x^2 + bx + 3)$

A = the value of ab

Part 2

Find the value of x such that 4x+6, x+6, 4x-2 are the first 3 terms of an arithmetic sequence.

B = x

Part 2

Find the value of x such that 4x+6, x+6, 4x-2 are the first 3 terms of an arithmetic sequence.

Part 3
Find the product of:

$$\begin{pmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 6 & 1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
C = answer matrix and take entry R₁C₁ - R₂C₁

Part 3 Find the product of: $\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix} \cdot \begin{bmatrix} 6 & 1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ C = answer matrix and take

entry $R_1C_1 - R_2C_1$

Final: C - AB

Final:
$$C - AB$$