Round # _____

NMA0 2002 MU School Bowl

Round # _____

A = _____ B = _____ C = _____

Final answer:

A =	
В =	
C =	

Final answer:

CODE: _____

CODE: _____

Round 1

Part 1 Find the limit, if it exists: $\lim_{x \to 0} \frac{\sqrt{4-x} - 2}{x}$ A = the value of the limit, if it exists NMA0 2002 MU School Bowl

Round 1

Part 1 Find the limit, if it exists: $\lim_{x\to 0} \frac{\sqrt{4-x}-2}{x}$ A = the value of the limit, if it exists

Part 2 Given $f(x) = -3x^2 + 8x - 1$. Find the point on the graph where the tangent line has a slope of -4.

B = sum of the coordinates of the point

Part 2
Given
$$y = \frac{4}{3}\sin\left(x + \frac{3\pi}{5}\right) - \frac{2\pi}{3}$$

B = the denominator of the sum of the period and the phase shift

Part 3 At what x values, if any, does the function $f(x) = \frac{x^2 - 9}{x^2 + 7x + 12}$, have a vertical asymptote?

C = {
 the x value of the asymptote
 the sum of the x values of the asymptotes
 nothing, if there are no vertical asymptote(s) Part 3 At what x values, if any, does the function $f(x) = \frac{x^2 - 9}{x^2 + 7x + 12}$, have a vertical asymptote?

C = { the x value of the asymptote the sum of the x values of the asymptotes nothing, if there are no vertical asymptote(s)

Final answer = AC + B

Final answer = AC + B

Round 2

Part 1

Given $f(x) = \begin{cases} \frac{x+3}{x^2+8x+15}, & x \neq -3 \\ k, & x = -3 \end{cases}$. Find k so that f(x) is continuous at x = -3.

A = k

NMA0 2002 MU School Bowl

Round 2

Part 1

Given $f(x) = \begin{cases} \frac{x+3}{x^2+8x+15}, & x \neq -3 \\ k, & x = -3 \end{cases}$ Find k so that f(x) is continuous at x = -3.

$$A = k$$

Part 2
Solve for
$$x: 3^{(\log_3 42 - \log_3 6)} = x$$

B = x
Part 2
Solve for $x: 3^{(\log_3 42 - \log_3 6)} = x$
B = x

Part : Evalu	3 Jate:						Part 3 Evaluate:				
			1	-2	-3	0		1	-2	-3	0
-3	2		-1	1	0	2		-1	1	0	2
1	5	+	0	2	0	3		0	2	0	3
			3	4	0	2		3	4	0	2
C =	sum	of	the	detei	rmina	ants	C = sum of	the	deter	rmina	nts

Final: $A^{B}C$

Final: $A^{B}C$

Round 3

Part 1

An object thrown upward from the ground with initial speed of 172 ft/s is modeled by $s(t) = -16t^2 + 172t$, where t is in seconds. What is the instantaneous speed of the object at t = 6 s?

A = the instantaneous speed

NMA0 2002 MU School Bowl

Round 3

Part 1

An object thrown upward from the ground with initial speed of 172 ft/s is modeled by $s(t) = -16t^2 + 172t$, where t is in seconds. What is the instantaneous speed of the object at t = 6 s?

A = the instantaneous speed

Part 2	Part 2
Evaluate $\int 3(w-2)(4w+7) dw$	Evaluate $\int 3(w-2)(4w+7) dw$
B = the coefficient of the cubic term	B = the coefficient of the cubic term

Part 3

The one real zero of the function $f(x)=3x^3-7x^2-7x-10$ lies between

C = product of the two integers

what two consecutive integers?

Part 3

The one real zero of the function $f(x)=3x^3-7x^2-7x-10$ lies between what two consecutive integers?

C = product of the two integers

Final: BC + A Final: BC + A

Round 4

Part 1 Find the point/slope form of the equation of the normal line to the curve $x^{2} + y^{2} = 10$ at (3,1).

A = slope of the normal line

NMA0 2002 MU School Bowl

Round 4

Part 1 Find the point/slope form of the equation of the normal line to the curve $x^2 + y^2 = 10$ at (3,1).

A = slope of the normal line

Part 2 Find the exact solution set of the equation: $\log_4(x+12) = 4 - \log_4(x-12)$

B = x

Part 2 Find the exact solution set of the equation: $\log_4(x+12) = 4 - \log_4(x-12)$

B = x

Part 3 Solve for x on the interval $[0,2\pi)$ if $\cos x + \sin x \tan x = 2$.

C = largest solution

Part 3 Solve for x on the interval $[0,2\pi)$ if $\cos x + \sin x \tan x = 2$.

C = largest solution

Final: $12C(AB\pi)^{-1}$

Final: $12C(AB\pi)^{-1}$

Round 5

Part 1 Evaluate $\int_{-1}^{3} (6x^2 + 4x - 2) dx$

A = answer

NMA0 2002 MU School Bowl

Round 5

Part 1 Evaluate $\int_{-1}^{3} (6x^2 + 4x - 2) dx$

A = answer

Part 2 In how many ways can the letters in the word TASTEE be arranged? Part 2 In how many ways can the letters in the word TASTEE be arranged?

B = number of ways

Part 3	
The minimum value of	
$f(x) = x^2 + \frac{2}{x}$, on $\frac{1}{2} \le x \le 2$ is ?	

C = the minimum value

B = number of ways

Part 3 The minimum value of $f(x) = x^2 + \frac{2}{x}$, on $\frac{1}{2} \le x \le 2$ is ?

C = the minimum value

Final: $B - C\sqrt{A}$

Final: $B - C\sqrt{A}$

Round 6

Part 1

Find the sum of the infinite geometric series....1000 + 700 + 490 + 343 + ...

A = denominator in the answer

NMA0 2002 MU School Bowl

Round 6

Part 1

Find the sum of the infinite geometric series....1000 + 700 + 490 + 343 + ...

A = denominator in the answer

Part 2

A particle moves along the parabola $x = 3y - y^2$ so that $\frac{dy}{dt} = 3$ at all time t. The speed of the particle when it is at position (1,2) is ?

B = speed

Part 2 A particle moves along the parabola $x = 3y - y^2$ so that $\frac{dy}{dt} = 3$ at all time t. The speed of the particle when it is at position (1,2) is ?

B = speed

Part 3 If $y = \cot^2 \sqrt{x}$, find y'.

C = degree of cot x function in the final answer

Part 3 If $y = \cot^2 \sqrt{x}$, find y'.

C = degree of cot x function in the final answer

Final: $B^{(A-C)}$

Final: $B^{(A-C)}$

Round 7

Part 1 Find the equation of the line tangent to the graph of $y = -4x^4 + 8x^2 + 92x$ at x = 2.

A = sum of the slope and the y-intercept

NMA0 2002 MU School Bowl

Round 7

Part 1 Find the equation of the line tangent to the graph of $y = -4x^4 + 8x^2 + 92x$ at x = 2.

A = sum of the slope and the y-intercept

Part 2

In the food chain, barracuda feed on bass and bass feed on shrimp. Suppose that the size of the barracuda population is estimated by the function $r(x)=1000 + \sqrt{20x}$, where x is the size of the bass population. Also suppose that the bass population is estimated by the function $s(x)=2500+\sqrt{x}$, where x is the size of the shrimp population.

B = barracuda population when the shrimp population is 4,000,000

Part 2

In the food chain, barracuda feed on bass and bass feed on shrimp. Suppose that the size of the barracuda population is estimated by the function

 $r(x)=1000 + \sqrt{20x}$, where x is the size of the bass population. Also suppose that the bass population is estimated by the function $s(x)=2500+\sqrt{x}$, where x is the size of the shrimp population.

B = barracuda population when the shrimp population is 4,000,000

Part 3	Part 3
Evaluate:	Evaluate:
$\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \frac{\cos 2x}{\sin^2 2x} dx$	$\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \frac{\cos 2x}{\sin^2 2x} dx$
C = answer	C = answer

Final: C(B) - A Final

Final: C(B) - A

Round 8

Part 1 State the domain of the function:

$$f(x) = \frac{\sqrt{4-x}}{x}$$

A = upper bound of the domain

NMA0 2002 MU School Bowl

Round 8

Part 1 State the domain of the function: $f(x) = \frac{\sqrt{4-x}}{x}$

A = upper bound of the domain

Part 2
Given
$$f(x) = \ln(x\sqrt{x^2+1})$$
, find $f'(2)$.

B = denominator - numerator of the answer

Part 2
Given
$$f(x) = \ln(x\sqrt{x^2+1})$$
, find $f'(2)$.

B = denominator - numerator of the answer

Part 3

Suppose that $\sin\theta + \cos\theta = 1.2$

What is the value of $\sin 2\theta$?

C = answer

Part 3

Suppose that $\sin \theta + \cos \theta = 1.2$ What is the value of $\sin 2\theta$?

C = answer

Final:
$$\left(\frac{C}{A}\right)^{B}$$

Final:
$$\left(\frac{C}{A}\right)^{B}$$

Round 9

Part 1

Solve the system: $\begin{cases} x + y = 2 \\ x + y^2 = 4 \end{cases}$

A = sum of all the coordinates of all thepoints of intersection

Round 9

NMA0 2002

MU School Bowl

Part 1

Solve the system: $\begin{cases} x + y = 2 \\ x + y^2 = 4 \end{cases}$

A = sum of all the coordinates of all thepoints of intersection

Part 2

A red die and a blue die are rolled simultaneously. What is the probability that the red die shows a larger number than the blue die?

> B = denominator - numerator (in lowest terms)

Part 2

A red die and a blue die are rolled simultaneously. What is the probability that the red die shows a larger number than the blue die?

B = denominator - numerator(in lowest terms)

Part 3

Let f(x) = 3x + 1 and g(x) = 2x + 5

Then f(g(x)) - g(f(x)) = ?

C = answer

Final: 6A - 4B + C

Part 3

Let f(x) = 3x + 1 and g(x) = 2x + 5

Then f(g(x)) - g(f(x)) = ?

C = answer

Final: 6A - 4B + C

Round 10

Part 1 Let $f(x) = x^5 + 1$ and let g(x) be the inverse function of f.

A = the value of g'(0)

NMA0 2002 MU School Bowl

Round 10

Part 1 Let $f(x) = x^5 + 1$ and let g(x) be the inverse function of f.

A = the value of g'(0)

Part 2

Find the value of x such that 4x+6, x+6, 4x-2 are the first 3 terms of an arithmetic sequence.

B = x

Part 2

Find the value of x such that 4x+6, x+6, 4x-2 are the first 3 terms of an arithmetic sequence.

B = x

Part 3 The number of inflection points that $f(x) = 3x^5 - 10x^3$ has is ?	Part 3 The number of inflection points that $f(x) = 3x^5 - 10x^3$ has is ?
C = number of inflection points	C = number of inflection points

Final: C - AB

Final: C - AB