Round # _____

NMA0 2002 THETA School Bowl

Round # _____

A = _____ A = ____ B = _____ B = ____ C = ____ C = ____

Final answer:

B = C =	Α =	
C =	B =	
	C =	

Final answer:

CODE: _____

CODE: _____

Round 1

Part 1

Given that the lines are tangent to the circle, find the measure of ${\ensuremath{ \ensuremath{ \ensuremath{$

 \widehat{ABC} is 220°.

C A = the numerical value of $\angle \theta$.

NMA0 2002 THETA School Bowl

Round 1

Part 1 Given that the lines are tangent to the circle, find the measure of $\angle \theta$ if arc

 \widehat{ABC} is 220°.

C A = the numerical value of $\angle \theta$.

Part 2	2						
Find	2	-1]	1 2	-1	2]	2^{5}	4]
i inu	4	2	т J	2	0	-2 1	-2

B = the row 2 column 1 entry if the answer matrix.

Part 2	<u>)</u>					
Find	2	-1]	$\begin{bmatrix} 3 \end{bmatrix} -1$	2	-2^{5}	4]
i inu	4	2	2	0	$\begin{bmatrix} -2\\1 \end{bmatrix}$	-2

B = the row 2 column 1 entry if the answer matrix.

Part 3

Simplify: $\frac{(4^{n+1})(16^{n+1})}{(4^3)^{n+1}}$

C = answer to Part 3

Part 3

Simplify:
$$\frac{(4^{n+1})(16^{n+1})}{(4^3)^{n+1}}$$

C = answer to Part 3

Final answer =
$$\frac{A}{B} + C$$
 Final answer = $\frac{A}{B} + C$

Round 2

Part 1 $m \angle AXB = 3x - 1, m \angle PXB = 2x - 3,$ $m \angle PXC = 4x + 6, m \angle AXC = 128^{\circ}$ A = the measure of the smallest angle.

NMA0 2002 THETA School Bowl

Round 2

Part 1 $m \angle AXB = 3x - 1, m \angle PXB = 2x - 3,$ $m \angle PXC = 4x + 6, m \angle AXC = 128^{\circ}$ A = the measure of the smallest angle.

Part 2 Given $f(x) = 5x^2 - 6$, B = f(-3).

Part 2 Given $f(x) = 5x^2 - 6$, B = f(-3).

Part 3					
Find the quotient:					
$3x^6 + 2x^5 - 8x^4 + 2x^2 + 4x$					
x+2					

 $C = coefficient of the x^4 term$

Part 3 Find the quotient: $\frac{3x^6 + 2x^5 - 8x^4 + 2x^2 + 4x}{x+2}$

 $C = coefficient of the x^4 term$

Final:
$$\frac{A+B}{C}$$
 Final: $\frac{A+B}{C}$

Round 3

Part 1 Find A given:

NMA0 2002 THETA School Bowl

Round 3

Part 1 Find A given:

Part 2

Solve for x:

$$\frac{2}{x} + \frac{1}{x-2} = 1$$

B = sum of the solutions

Part 2

Solve for x:

 $\frac{2}{x} + \frac{1}{x-2} = 1$

B = sum of the solutions

Part 3

Given $L_1 \parallel L_2$ find x.

Final: $C^{\frac{A}{B}}$

Part 3

Given $L_1 \parallel L_2$ find x.

C = xFinal: $C^{\frac{A}{B}}$

Round 4

Part 1 A line contains the points (-1, 1) and (3, 9). Find its x – intercept. A = value of the x-intercept NMA0 2002 THETA School Bowl

Round 4

Part 1 A line contains the points (-1, 1) and (3, 9). Find its x – intercept. A = value of the x-intercept

Part 2 Multiply, express answer in a +bi form:

$$(2+3i)(-3+5i)$$

B = a in (a + bi) of the answer

Part 3

The length of \widehat{AR} is 40π cm. If \overrightarrow{PA} is parallel to \overleftarrow{RE} , find the radius of the circle.

C = radius of the circle

Part 2 Multiply, express answer in a +bi form:

(2+3i)(-3+5i)

B = a in (a + bi) of the answer

Part 3

The length of \widehat{AR} is 40π cm. If \overrightarrow{PA} is parallel to \overleftarrow{RE} , find the radius of the circle.

C = radius of the circle

Final:
$$C - \frac{B}{A}$$
 Final: $C - \frac{B}{A}$

Round 5

Part 1 Find the perimeter of the triangle using the figure.

A = perimeter

NMA0 2002 THETA School Bowl

Round 5

Part 1 Find the perimeter of the triangle using the figure.

A = perimeter

Part 2

Write the solution as a single inequality statement : $-3 \le 2x - 5 \le 11$

B = maximum value of the solution

Part 3 The length and the width of a rectangle have a ratio of 3:2. The area of the rectangle is 54. C = larger side of the rectangle Part 2 Write the solution as a single inequality statement : $-3 \le 2x - 5 \le 11$

B = maximum value of the solution

Part 3 The length and the width of a rectangle have a ratio of 3:2. The area of the rectangle is 54. C = larger side of the rectangle

Final: $B^{\frac{A}{C}}$

 $B^{\frac{A}{C}}$ Final:

Round 6

Part 1

The vertex angle of an isosceles triangle is 23° less than two-and-one-half times the sum of the measures of the two base angles.

A = the measure of one of the base angles

NMA0 2002 THETA School Bowl

Round 6

Part 1

The vertex angle of an isosceles triangle is 23° less than two-and-one-half times the sum of the measures of the two base angles.

A = the measure of one of the base angles

Part 2 Solve for *x* : $x - 7\sqrt{x} + 10 = 0$

B = sum of the solution(s)

Part 2 Solve for $x: x - 7\sqrt{x} + 10 = 0$

B = sum of the solution(s)

Part 3

Rose spends \$149 each month on gas, electricity and water. The charge for gas is \$7 more than four times the water charge. Electricity costs \$2 less than three times the water.

C = the cost of gas

Part 3

Rose spends \$149 each month on gas, electricity and water. The charge for gas is \$7 more than four times the water charge. Electricity costs \$2 less than three times the water.

C = the cost of gas

Final: B(C - A)

Final: B(C - A)

Round 7

Part 1 Given that $x^2 - kx + 121$ is a perfect trinomial square, what is the value for k?

A = k

NMA0 2002 THETA School Bowl

Round 7

Part 1 Given that $x^2 - kx + 121$ is a perfect trinomial square, what is the value for k?

A = k

Part 2
Evaluate:
$$(32)^{\frac{1}{5}} - \left(\frac{3}{2}\right)^{-1} + \left(\frac{1}{8}\right)^{-\frac{2}{3}} + \left(\frac{8}{27}\right)^{\frac{1}{3}}$$

B = answer to part 2

Part 2 Evaluate: $(32)^{\frac{1}{5}} - (\frac{3}{2})^{-1} + (\frac{1}{8})^{-\frac{2}{3}} + (\frac{8}{27})^{\frac{1}{3}}$

B = answer to part 2

Part 3		Part 3		
Solve the system:	4x + 3y = 27 $y = 2x - 1$	Solve the system:	4x + 3y = 27 $y = 2x - 1$	
C = product of the	solution	C = product of the solution		

Final: $C^2 - B^3 - A$

Final: $C^2 - B^3 - A$

Round 8

Part 1 Solve for x, express answer as an $\frac{x-2}{3}$ inequality: ≤ 5 A = minimum value of the answer

NMA0 2002 THETA School Bowl

Round 8

Part 1 Solve for x, express answer as an $\frac{x-2}{3}$ inequality: ≤ 5 A = minimum value of the answer

Part 2 The measure of the vertex angle of an isosceles triangle is 110°.

B = the measure of one base angle.

Part 2 The measure of the vertex angle of an isosceles triangle is 110°.

B = the measure of one base angle.

Part 3 Simplify by performing the indicated operations: 3(5m+4)(m-6) - 2(m-6)(3m+7)

C = sum of the coefficients of the answerto part 3

Part 3 Simplify by performing the indicated operations: 3(5m+4)(m-6) - 2(m-6)(3m+7)

C = sum of the coefficients of the answerto part 3

Final: $(B + C)^A$

Final:
$$(B + C)^A$$

Round 9

Part 1 A line passes through the points (-3,1) and (4,k) and has a slope of $\frac{1}{2}$.

A = k

NMA0 2002 THETA School Bowl

Round 9

Part 1 A line passes through the points (-3,1) and (4,k) and has a slope of $\frac{1}{2}$.

A = k

Part 2 Perform the operation:

$$\frac{x^2 + 3x - 54}{x^2 - 81} \div \frac{x^2 - 10x + 24}{x^2 - 10x + 9}$$

B = numerator - denominator

Part 2 Perform the operation:

 $\frac{x^2 + 3x - 54}{x^2 - 81} \div \frac{x^2 - 10x + 24}{x^2 - 10x + 9}$

B = numerator - denominator

Part 3 Find the EXACT answer in simplest radical form for: $3\sqrt[3]{54} + 9\sqrt[3]{16} - 2\sqrt[3]{128}$

C = coefficient of the answer

Part 3 Find the EXACT answer in simplest radical form for: $3\sqrt[3]{54} + 9\sqrt[3]{16} - 2\sqrt[3]{128}$

C = coefficient of the answer

Final: 6A - 4B + C

Final: 6A - 4B + C

Round 10

Part 1

From a variety of locations in a lake, a biologist catches 80 fish, then tags and returns them to the lake. A week later, 60 fish are caught from the same locations. Exactly 12 of the 60 fish have tags. Assume that both catches are taken randomly.

A = the estimate of fish in the entire lake

NMA0 2002 THETA School Bowl

Round 10

Part 1

From a variety of locations in a lake, a biologist catches 80 fish, then tags and returns them to the lake. A week later, 60 fish are caught from the same locations. Exactly 12 of the 60 fish have tags. Assume that both catches are taken randomly.

A = the estimate of fish in the entire lake

Part 2

If Herman's test grade and quiz grade are equally weighted, his average would be 85. If the test counts for 3 times as much as the quiz, his average is 83.

B = his test grade

Part 2

If Herman's test grade and quiz grade are equally weighted, his average would be 85. If the test counts for 3 times as much as the quiz, his average is 83.

B = his test grade

Part 3
Solve for x:
$$\begin{vmatrix} -3 & x \\ 7 & -8 \end{vmatrix} = 10$$

C = x

Final:

Part 3
Solve for x:
$$\begin{vmatrix} -3 & x \\ 7 & -8 \end{vmatrix} = 10$$

C = x

$$\left(\sqrt{A} - \sqrt{B}\right)^c$$

Final:
$$\left(\sqrt{A} - \sqrt{B}\right)^{C}$$