SOLUTIONS—Alpha Equations and Inequalities Topic Test

Note: For each problem, where there is no choice (e), assume (e) none of the above.

1. Solve for k: $4k - 2(k - 1) = 12$
 a) $\frac{5}{3}$ b) $\frac{7}{3}$ c) 3 d) 5

Answer: d
Solution: $4k - 2k + 2 = 12 \rightarrow 2k = 10 \rightarrow k = 5$

2. If $x:y = 2:1$, find the value of $\frac{x^2 - y^2}{x^2 + y^2}$
 a) $\frac{3}{5}$ b) 2 c) $\frac{1}{3}$ d) cannot be determined

Answer: a
Solution: $\frac{x}{y} = \frac{2}{1} = \frac{2a}{1a} \rightarrow \frac{(2a)^2 - a^2}{(2a)^2 + a^2} = \frac{4a^2 - a^2}{4a^2 + a^2} = \frac{3a^2}{5a^2}$

3. Find the solution set for: $7p - 2(p - 3) \leq 5(2 - p)$
 a) \emptyset b) $(-\infty, 0.4]$ c) $(-\infty, 1]$ d) $(-\infty, \frac{8}{7}]$

Answer: b
Solution: $7p - 2p + 6 \leq 10 - 5p$

 $5p + 6 \leq 10 - 5p$

 $10p \leq 4$

 $p \leq 0.4$

4. Express the solution in interval form for $5 \leq 2x - 3 \leq 7$.
 a) $[1,2]$ b) $(-\infty, 1] \cup [2, \infty)$ c) $(-\infty, 4] \cup [5, \infty)$ d) $[4,5]$

Answer: d
Solution: $8 \leq 2x \leq 10$

 $4 \leq x \leq 5$

5. Solve for r: $\frac{5}{3r} - 10 = \frac{3}{2r}$
 a) $-\frac{1}{12}$ b) $-\frac{9}{50}$ c) 60 d) $\frac{1}{60}$

Answer: d
6. A baseball player threw a ball that traveled according to the equation
\[h(t) = 9.8t + 1.1 - 4.9t^2 \]
where \(h \) = height in meters and \(t \) = time in seconds. What is the maximum height reached by the ball?

a) 1 m
 b) 3.8 m
 c) 6 m
 d) 15.8 m

Answer: c

Solution:
\[t = \frac{-9.8}{2(4.9)} = 1 \rightarrow h(1) = 9.8 + 1.1 - 4.9 = 6.0 \text{m} \]

7. For what values of \(x \) and \(y \) is the following true?
\[(2-i) + 4x + yi = 6 + 3i \]

a) (1,4)
 b) (-1, -4)
 c) \(\frac{3}{2}, -1 \)
 d) \(\frac{-3}{2}, 1 \)

Answer: a

Solution:
\[2 + 4x = 6 \quad -i + yi = 3i \]
\[4x = 4 \quad (y-1)i = 3i \]
\[x = 1 \quad y-1 = 3 \]
\[y = 4 \]

8. Solve for the only positive solution to
\[\begin{bmatrix} x^2 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \]

a) \(32 \sqrt{2} \)
 b) 16
 c) 8
 d) 4

Answer: d

Solution:
\[x^\frac{4}{2} = x^2 = 16 \rightarrow x = \pm 4 \]

9. Find the solution set for:
\[x^2 + 3x - 4 \leq 0 \]

a) \([-4, 1]\)
 b) \([-1, 4]\)
 c) \((-\infty, -4] \cup [1, \infty)\)
 d) \((-\infty, -1] \cup [4, \infty)\)

Answer: a

Solution:
\[(x+4)(x-1) \leq 0 \quad + - + \]
\[x = -4 \quad 1 \quad \text{choose the negative section} \]

10. Solve for the solution set:
\[-3x + \frac{-6+3}{-3} > -8x + \frac{4+2}{-6+3} \]
a) \(x < \frac{1}{11}\)
b) \(x > \frac{1}{11}\)
c) \(x < -\frac{1}{6}\)
d) \(x > -\frac{1}{6}\)

Answer: a
\[-3x + 1 > -8x - 1\]
\[-3x + 1 > 8x\]
Solution:
\[-11x > -1\]
\[x < \frac{1}{11}\]

11. Using only one solution, round to the nearest degree to solve for \(\theta\) given:
\[\sin^2 \theta - 0.3 \sin \theta - 0.4 = 0\] where \(0 \leq \theta < 360\).
a) -1
b) 1
c) 30
d) 53
Answer: d
Solution: Using the quadratic formula, the roots are 0.8 and -0.5. Taking the arcsin of each angle value gives one angle of -30 and the other of 53 degrees. -30 is not on the given interval so choose 53.

12. Solve for \(f\):
\[A = \frac{24f}{B(p+1)}\]
a) \(\frac{24}{A} - Bp - 1\)
b) \(\frac{AB(p+1)}{24}\)
c) \(\frac{ABp - 1}{24}\)
d) \(ABp + \frac{1}{24}\)
Answer: b
\[B(p+1) \left(A = \frac{24f}{B(p+1)} \right)\]
Solution:
\[\frac{AB(p+1)}{24} = f\]

13. Find the length of a line segment defined as part of the line \(2x - y = 12\) between the x and y axes.
a) 12
b) 12.490
c) 13.416
d) 18
Answer: c
Solution: The x-intercept for the line is (6,0) and the y-intercept is (0, -12)
Find the distance between these two points. \(\sqrt{6^2 + 12^2} = \sqrt{180} = 6\sqrt{5} \approx 13.416\)

14. Find the value for \(n\) if \(3 + 3^2 + 3^3 + ... + 3^n = 9840\) and \(S_n = \frac{a(1-r^n)}{1-r}\).
a) 8
b) 9
c) 10
d) 11
Answer: a
\[
9840 = \frac{3(1-3^n)}{1-3}
\]
\[-19680 = 3 - 3^{n+1}
\]
Solution: $19680 = 3^{n+1}$
\[3^n = 3^{n+1}
\]
\[n+1 = 9
\]
\[n = 8
\]

15. The value, in dollars, of a diamond is directly proportional to the square of its mass. If a diamond, worth $6300 is 200 mg, what is the mass of a diamond worth $25,200?

a) 450 mg b) 600 mg c) 725 mg d) 800 mg

Answer: d

Solution: \[
\frac{6300}{200} = \frac{25200}{m}
\]
Solution: \[63m = 50400
\]
\[m = 800 \text{ mg}
\]

\[0.25x + 0.4y + 0.2z = 22
\]

16. Given the system: \[0.4x + 0.2y + 0.3z = 28, 0.3x + 0.2y + 0.1z = 18
\]

a) (30, 20, 35) b) (30, 20, 40) c) (40, 15, 30) d) (40, 20, 20)

Answer: c

Solution: On calculator: \[
\begin{bmatrix}
.25 & .4 & .2 \\
.4 & .2 & .3 \\
.3 & .2 & .1
\end{bmatrix}
^{-1}
\begin{bmatrix}
22 \\
28 \\
18
\end{bmatrix}
= \begin{bmatrix}
40 \\
15 \\
30
\end{bmatrix}
\]

17. Solve for \(y\): \[\frac{y}{y-2} = \frac{y^2+3y}{y^2-4} - \frac{3}{y+2}
\]

a) \(-\frac{3}{2}
\) b) -2 c) 3 d) no real solution

Answer: c

\[
\left(\frac{y}{y-2} = \frac{y^2+3y}{y^2-4} - \frac{3}{y+2}\right)\left(y+2\right)\left(y-2\right)
\]
\[y(y+2) = y^2+3y-3(y-2)
\]

Solution: \[y^2 + 2y = y^2 + 3y - 3y + 6
\]
\[2y = 6
\]
\[y = 3, \ y \neq 2 \text{ or } -2
\]
18. Which points are NOT on the circle defined by the equation $x^2 + y^2 = 25$?
 I (0,25) II (-5,0) III (12.5,12.5) IV (3,-4) V ($-2\sqrt{2}$, 4)
 a) I & III b) III & V c) II & IV d) I, III & V
 Answer: d
 Solution: Fill the points in for x & y

19. Given:
 \begin{align*}
 y &\geq 5 \\
 2 \leq x \leq 7 & \text{ and a profit equation of } P = 3x + y, find the coordinates that will maximize the profit.
 \end{align*}
 a) (2,42) b) (7,47) c) (2,45) d) (7,49)
 Answer: b
 Solution: P intersects $2 \leq x \leq 7$ @ (2,42) and (7,47) using both in the profit equation, (7,47) produces a higher profit of 68.

20. Solve for x: $5^{\log_5(x - \log_5 2)} = 4$.
 a) 2 b) 4 c) 6 d) 8
 Answer: d
 Solution:
 \begin{align*}
 5^{\log_5(x - \log_5 2)} &= 4 \\
 5^{\log_5\left(\frac{x}{2}\right)} &= 4 \\
 \frac{x}{2} &= 4 \\
 x &= 8
 \end{align*}

21. The period of the graph of $y = \tan\left(\frac{1}{3}\theta\right)$ is:
 a) $\frac{\pi}{3}$ b) 3π c) $\frac{2\pi}{3}$ d) 6π
 Answer: b
 Solution: $period = \frac{\pi}{B} = \frac{\pi}{\frac{1}{3}} = 3\pi$

22. Express the solution in interval notation: $\frac{3}{x+2} > \frac{2}{x-4}$
 a) (16, ∞) b) (-2,4) \cup (16, ∞) c) $(-\infty, -\frac{8}{5})$; x \neq -2 d) $(-\infty, -2) \cup (4, \infty)$
 Answer: b
Solution:

\[
\frac{3}{x+2} > \frac{2}{x-4} \\
\frac{3}{x+2} - \frac{2}{x-4} > 0 \\
\frac{3(x-4) - 2(x+2)}{(x+2)(x-4)} > 0 \\
\frac{x-16}{(x+2)(x-4)} > 0 \\
\]

-2 4 16 + + Answer are the parts which are +.

23. Find the values for which \(f(x) = g(x) \) given \(f(x) = \sqrt{3x} + 1 \) and \(g(x) = x + 1 \).
 a) -1 b) 0 c) 3 d) \{0,3\}
Answer: d
Solution:
\[
\sqrt{3x} + 1 = x + 1 \\
\sqrt{3x} = x \\
3x = x^2 \\
x^2 - 3x = 0 \\
x(x - 3) = 0 \\
\]

24. How much money, \(A \), does Sasha need to invest today at 9% compounded annually in order to have $5000 in 8 years if the situation is modeled by: \(8 \log 1.09 + \log A = \log 5000 \)?
 a) $2500 b) $2510 c) $2550 d) $3700
Answer: b
Solution:
\[
\log A = \log 5000 - 8 \log 1.09 \\
\]
\[
A \approx 2510 \\
\]

25. Find the sum of the roots given \(x^3 - 7x + 6 = 0 \).
 a) -6 b) 0 c) 6 d) 7
Answer: b
Solution: for all \(ax^3 + bx^2 + cx + d = 0 \) the sum of the roots = \(-\frac{b}{a} = 0 \) = 0

26. Solve for \(x \) over the Reals: \(x^4 + 6x^2 - 40 = 0 \)
 a) \(\pm 2 \) b) \(\pm 2, \pm \sqrt{10} \) c) -10, 4 d) \(\phi \)
Answer: a
Solution: Factor and solve. \((x^2 - 4)(x^2 + 10) = 0 \) \(\rightarrow x = \pm 2 or \pm i \sqrt{10} \)

27. A calculator manufacturer predicts that the number, \(N \), of calculators sold when \(x \) thousand
of dollars are spent on advertising is given by \(N = 2275 + 10000 \ln(x+1) \). How much advertising money must be spent to sell 62,583 calculators?

a) 9.99×10^5

b) 7803.75

c) 415.05

d) 7.97

Answer: c

\[62583 = 2275 + 10000 \ln(x+1) \]
\[60308 = 10000 \ln(x+1) \]
\[60308 = \ln(x+1) \]
\[e^{6.0308} = e^{\ln(x+1)} \]
\[416.0477 = x + 1 \]
\[415.05 = x \]

28. Find the solution set for \(-3|x| + 6 \leq 12 \).

a) \((-\infty, -2] \cup [2, \infty)\)

b) \([-2, 2]\)

c) no solution

d) all real numbers

Answer: d

\[-3|x| + 6 \leq 12 \]
\[-3|x| \leq 6 \quad \text{which is true for all values of } x. \]
\[-|x| \geq -2 \]

29. Find the solution set:
\[2x^2 = 32 \left(2^{4x}\right) \]

a) 0, 20

b) -1

c) 5

d) -1, 5

Answer: d

\[2x^2 = 32 \left(2^{4x}\right) \]
\[2x^2 = 2^5 \left(2^{4x}\right) \]

Solution:
\[x^2 = 5 + 4x \]
\[x^2 - 4x - 5 = 0 \]
\[(x-5)(x+1) = 0 \]

30. Find the solution for \(x^3 + 6x^2 - x - 5 < 1 \).

a) \((-6, 0] \cup (1,5)\)

b) \((-\infty, -6) \cup (0,5)\)

c) \((-6, -1) \cup (1, \infty)\)

d) \((-\infty, -6) \cup (-1,1)\)

Answer: d

\[x^3 + 6x^2 - x - 6 < 0 \]

Solution:
\[x^2(x+6) - 1(x+6) < 0 \]
\[(x+6)(x+1)(x-1) < 0 \]

\[
\begin{array}{ccccccc}
-6 & + & -1 & - & +
\end{array}
\]

choose the negative intervals
31. The equations of the sides of quadrilateral ABCD are: AB: x+6y=15 BC: 4x - y=10
 DC: 3x+7y=-8 AD: x - y= -6. Which vertex(ices) would give a sum of zero if you
 added its x and y coordinates?
 a) A & B b) B & C c) C & A d) D & A
 Answer: c
 Solution: When each pair of equations are solved the coordinates in order are (-3,3), (3,2),
 (2,-2), & (-5,1), so both A & C are correct.

32. For what value(s) of p does the equation have real and unequal roots?
 \[5x^2 -(p-1)x +1 = 0 \]
 a) \(p > 1 + 2\sqrt{5} \) b) \(p > 1 + 2\sqrt{5} \) or \(p < 1 - 2\sqrt{5} \) c) \(p > 3 \) d) \(p > 1\pm 2\sqrt{5} \)
 Answer: b
 Solution:
 \[(p-1)^2 - 4(5)(1) > 0 \]
 \[(p-1)^2 > 20 \]
 \[|p-1| > \sqrt{20} \]
 \[p > 1 + \sqrt{20} \] or \(p < 1 - \sqrt{20} \)

33. Given \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \), find the value of \(\sum_{i=1}^{50} 5i \). a) 255 b) 1275 c) 3275 d) 6375
 Answer: d
 Solution:
 \[5 \left(\frac{50(51)}{2} \right) = 5(25)(51) = 6375 \]

34. Solve for a, given \((a+6)\binom{10}{6} - 3(5!) = (a-2)\binom{7}{2} \)
 a) 2 b) 5.2 c) 7 d) 14.08
 Answer: a
 \[(a+6)\binom{10}{6} - 3(5!) = (a-2)\binom{7}{2} \]
 \[45(a+6) - 360 = 20(a-2) \]
 \[9(a+6) - 72 = 4(a-2) \]
 Solution: \[9a + 54 - 72 = 4a - 8 \]
 \[9a - 18 = 4a - 8 \]
 \[5a = 10 \]
 \[a = 2 \]

35. Determine the exact real root, r, given \(r \sqrt{32} - \sqrt{2} = \sqrt{250} - \sqrt{4r^3} \)
 a) \(\sqrt[3]{4} \) b) \(\sqrt[3]{7} \) c) \(2\sqrt{2} \) d) \(7\sqrt[3]{4} \)
 Answer: a
Solution: \[r \sqrt[3]{32} - \sqrt[3]{2} = \sqrt[3]{250} - \sqrt[3]{4r^3} \]
\[r \sqrt[3]{8} \sqrt[4]{4} - \sqrt[2]{2} = \sqrt[3]{125} \sqrt[2]{2} - r \sqrt[2]{4} \]

TIEBREAKER: Solve for \(x \):
\[
\frac{11^x \left(7^{2x+3} \right)}{3^{1-x} \left(2^{4x-1} \right)} = 5^x
\]
Answer: \(-1.807\)