2002 National Mu Alpha Theta Convention Mu Division----Analytic Geometry Test

1.	Which nondegenerate	conic is represent	ted by the following equati	on?
	$2 \ 2 \ 2 \ \sqrt{2} \ . \ 2 \ . \ 2$. 2 /2		

 $3x^2 - 2\sqrt{3} xy + y^2 + 2x + 2\sqrt{3} y = 0$ A. circle

B. parabola

C. hyperbola D. ellipse E. none of the above

2. An ellipse whose center is at (-2, 3) has a major axis of length 11 inches and a minor axis of length 4 inches. What is the area (in square inches) enclosed by the ellipse?

A. 44π

Β. 22 π

C. 11π

D. 4π

E. NOTA

3. Find the area of a triangle whose vertices are (-2, 7), (6,8), and (1, -1).

A. 18.9

B. 25.8

C. 40.2

D. 33.5

E. NOTA

4. Find the perimeter (in inches) of a regular hexagon circumscribed about a circle of radius 10 inches.

A. $40\sqrt{3}$

B. 60 C. $60\sqrt{3}$ D. $150\sqrt{3}$

E. NOTA

5. Find the distance between the point (4,1) and the line whose equation is y = 2x + 1.

A. $\frac{6\sqrt{5}}{5}$ B. $\frac{7\sqrt{5}}{5}$ C. $\frac{8}{3}$ D. 2 E. NOTA

6. Find all vertical asymptotes for the following:

$$y = \frac{4x^3 + 4x^2 - 3x - 3}{x^2 + 3x + 2}$$

B. x = -2 C. x = -1, x = -2

D. There are no vertical asymptotes E. NOTA

7. The graph of which of the following functions does not cross the x-axis.

A. $v = -x^3 + x^2 + 1$ B. $f(x) = x^6 + x^4 + 2$

C. $h(x) = x^4 - x^3 - 1$ D. $g(x) = x^3 + 3x^2 - 2x - 1$

E. NOTA

8. Points A, B, C, and D lie on the graph of $y^2 + 2xy + x^2 + 3x + 4y + 2 = 0$, and each has abscissa (x-coordinate) of 1 or -1. Of these points, let A and C be the farthest apart. If $AC = \sqrt{p + q\sqrt{3}}$, where p and q are integers, find p-q.

A. 22

B. 10 C. 2 D. 7 E. NOTA

9.	If the sides of a right triangle are	a, a - d , a + d , where a and d	are positive real
	numbers, then $\left(\frac{a}{d}\right)^2 = \underline{\hspace{1cm}}$.		

A. 9 B. 16 C.
$$\frac{1}{9}$$
 D. $\frac{1}{16}$ E. NOTA

- 10. Triangle ABC has sides of lengths 20, 21, and 29 units. The diameter of the circle inscribed in the triangle is _____.
 - A. 12 B. 7 C. 11 D. 6 E. NOTA
- 11. The length of a rectangle is increased by 15% and the width is decreased by 20%. The percentage change in the area of the rectangle is ____.

 A. 3 B. 2 C. 5 D. 35 E. NOTA
- 11. 3 B. 2 C. 3 B. 33 E. 110111
- 12. Find the area enclosed by the system of inequalities:

$$\begin{cases} 2x + y \le 4 \\ x - y \ge 5 \\ x \ge 0 \\ y \ge -10 \end{cases}$$

- A. 35.5 B. $33\frac{5}{8}$ C. $34\frac{3}{8}$ D. 31.75 E. NOTA
- 13. A sphere has an area in square units equal to the number of cubic units in its volume. Find the ratio of the circumference of a great circle of the sphere to the area of a great circle of the sphere.
 - A. $\frac{3}{4}$ B. $\frac{2}{3}$ C. $\frac{3}{5}$ D. $\frac{1}{\pi}$ E. NOTA
- 14. Find the length of the latus rectum of the parabola $x^2 4x 12y 32 = 0$. A. 3 B. 6 C. 9 D. 12 E. NOTA
- 15. W hat are the coordinates of the focus of the parabola whose equation is $y^2 6y + 8x + 25 = 0$?
 - A. (-2, 3) B. (-2, 5) C. (-2, 0) D. (-2, 3) E. NOTA

16. An arch is in the form of a semi-ellipse. The arch is 52 meters wide at the base and has a height of 20 meters at its highest point. How wide, in meters, is the arch at a height of 10 meters above the base?					
	A. 40	B. $26\sqrt{3}$	C. 26	D. $13\sqrt{3}$	E. NOTA
17.		volume, in cubic (1, 4, 0)	<i>*</i>		vertices are:
	A. 14	B. 24	C. 42 D. 8	84 E. NO	ГА

18. In triangle ABC, angle C has measure 120 degrees, side BC has length 10 units, side AC has length 12. Find the length of side AB.

A.
$$2\sqrt{91}$$
 B. $\sqrt{244-120\sqrt{3}}$ C. $2\sqrt{41}$ D. $\sqrt{244+120\sqrt{3}}$ E. NOTA

19. The graph of $r = \sin \theta$ is a: A. circle B. parabola C. limacon D. cardioid E. NOTA

20. What is the tangent of the acute angles formed when the two lines whose equations are 3x - 4y = 7 and 2x + 3y = 8 intersect?

A. -17/6 B. 17/6 C. 1/6 D. 17/18 E. NOTA

21. W hat is the area, in square units, of the region enclosed by the graph of the

parametric equations $x = 8\cos\theta$ and $y = 6\sin\theta$? A. 96π B. 48π C. 12π D. 48. E. NOTA

22. What is the equation of the line tangent to the circle $x^2 + y^2 + 2x - 4y - 5 = 0$ at the point P(2,1)?

A. 3x + y = 7 B. x - 3y = -1 C. 3x - y = 5 D. x + 3y = 5 E. NOTA

23. Suppose the equation for an ellipse is given by $\frac{(x-3)^2}{16} + \frac{(y+2)^2}{b^2} = 1.$ Find b so that the eccentricity is 0.75.

A. 3 B. 6 C. $\sqrt{7}$ D. 5 E. NOTA

24. Which of the following is an asymptote to the hyperbola
$$\frac{(y+2)^2}{9} - \frac{(x-3)^2}{16} = 1$$

A.
$$y = \frac{3}{4}x - 3$$

A.
$$y = \frac{3}{4}x - 3$$
 B. $y = \frac{-3}{4}x - \frac{17}{4}$ C. $y = \frac{3}{4}x - \frac{17}{4}$ D. $y = \frac{-3}{4}x - \frac{1}{4}$

C.
$$y = \frac{3}{4}x - \frac{17}{4}$$

D.
$$y = \frac{-3}{4}x - \frac{1}{4}$$

E. NOTA

25. Determine an angle of rotation necessary to eliminate the xy term:

$$x^2 + xy + 2y^2 + 5x - 3y - 56 = 0$$

A.
$$\frac{3}{8}\pi$$

B.
$$\frac{3}{4}\pi$$

C.
$$\frac{\pi}{8}$$

D.
$$\frac{\pi}{4}$$

A.
$$\frac{3}{8}\pi$$
 B. $\frac{3}{4}\pi$ C. $\frac{\pi}{8}$ D. $\frac{\pi}{4}$ E. NOTA

26. Calculate the area inside the cardioid $r = 1 + \cos \theta$

B.
$$\frac{3}{4}\pi$$

C.
$$\frac{3}{2}$$

D.
$$\frac{\pi}{2}$$

A.
$$3\pi$$
 B. $\frac{3}{4}\pi$ C. $\frac{3}{2}\pi$ D. $\frac{\pi}{2}$ E. NOTA

27. Find an equation for the hyperbola with eccentricity $\frac{3}{2}$ and directrix x = 2.

A.
$$r = \frac{6}{2 + 3\cos\theta}$$
 B. $r = \frac{2}{2 + 3\cos\theta}$ C. $r = \frac{6}{1 + 2\cos\theta}$

$$B. \quad r = \frac{2}{2 + 3\cos\theta}$$

$$C. r = \frac{6}{1 + 2\cos\theta}$$

D.
$$r = \frac{3}{1 + 3\cos\theta}$$
 E. NOTA

28. Find the length of the arc of the curve $x = \frac{8}{3}t^{\frac{3}{2}}$, $y = 2t - t^2$ between t = 1 and t = 3.

- A. 4
- B. 16
- C. 12
- D. 8
- E. NOTA

29. Find the area of a parallelogram having $v_1 = -i + 2j + 2k$ and $v_2 = 3i - 2j + k$ as adjacent sides.

- A. 3
- B. 10
- C. $\sqrt{101}$ D. $\sqrt{69}$
- E. NOTA

30. The region in the first quadrant bounded by $y = \sin x^2$, the coordinate axes, and the line x = b, b>0, is revolved about the y-axis. Find b such that the volume of the solid generated is $\frac{\pi}{2}$ cubic units.

A.
$$\frac{\pi}{2}$$

B.
$$\sqrt{\frac{1}{3}}$$

A.
$$\frac{\pi}{2}$$
 B. $\sqrt{\frac{1}{3}}$ C. $-\sqrt{\frac{\pi}{3}}$ D. $\sqrt{\frac{\pi}{3}}$ E. NOTA

D.
$$\sqrt{\frac{\pi}{3}}$$

Mu Division—ANALYTIC GEOMETRY TOPIC TEST Answer Key

- 1. B
- **2.** C
- 3. D
- 4. A
- 5. E
- 6. B
- 7. B
- 8. B
- 9. B
- 10. A
- 11. E
- 12. A
- 13. B
- 14. D
- 15. E
- 16. B
- 17. A
- 18. A
- 19. A
- 20. B
- 20. B 21. B
- 22. C
- 23. C
- **24.** C
- 25. A
- **26.** C
- 27. A
- 28. C
- **29.** C
- 30. D