1. Which nondegenerate conic is represented by the following equation?

\[3x^2 - 2\sqrt{3} \, xy + y^2 + 2x + 2\sqrt{3} \, y = 0 \]

A. circle B. parabola C. hyperbola D. ellipse E. none of the above

2. An ellipse whose center is at (-2, 3) has a major axis of length 11 inches and a minor axis of length 4 inches. What is the area (in square inches) enclosed by the ellipse?

A. 44\pi B. 22\pi C. 11\pi D. 4\pi E. NOTA

3. Find the area of a triangle whose vertices are (-2, 7), (6,8), and (1, -1).

A. 18.9 B. 25.8 C. 40.2 D. 33.5 E. NOTA

4. Find the perimeter (in inches) of a regular hexagon circumscribed about a circle of radius 10 inches.

A. 40\sqrt{3} B. 60 C. 60\sqrt{3} D. 150\sqrt{3} E. NOTA

5. Find the distance between the point (4,1) and the line whose equation is \(y = 2x + 1 \).

A. \(\frac{6\sqrt{5}}{5} \) B. \(\frac{7\sqrt{5}}{5} \) C. \(\frac{8}{3} \) D. 2 E. NOTA

6. Find all vertical asymptotes for the following:

\[y = \frac{4x^3 + 4x^2 - 3x - 3}{x^2 + 3x + 2} \]

A. \(x = -1 \) B. \(x = -2 \) C. \(x = -1, x = -2 \) D. There are no vertical asymptotes E. NOTA

7. The graph of which of the following functions does not cross the x-axis.

A. \(y = -x^3 + x^2 + 1 \) B. \(f(x) = x^6 + x^4 + 2 \) C. \(h(x) = x^4 - x^3 - 1 \) D. \(g(x) = x^3 + 3x^2 - 2x - 1 \) E. NOTA

8. Points A, B, C, and D lie on the graph of \(y^2 + 2xy + x^2 + 3x + 4y + 2 = 0 \), and each has abscissa (x-coordinate) of 1 or -1. Of these points, let A and C be the farthest apart. If \(AC = \sqrt{p + q\sqrt{3}} \), where p and q are integers, find p-q.

A. 22 B. 10 C. 2 D. 7 E. NOTA
9. If the sides of a right triangle are \(a, a-d, a+d\), where \(a\) and \(d\) are positive real numbers, then \(\left(\frac{a}{d}\right)^2 = \) ____.

A. 9
B. 16
C. \(\frac{1}{9}\)
D. \(\frac{1}{16}\)
E. NOTA

10. Triangle ABC has sides of lengths 20, 21, and 29 units. The diameter of the circle inscribed in the triangle is _____.

A. 12
B. 7
C. 11
D. 6
E. NOTA

11. The length of a rectangle is increased by 15% and the width is decreased by 20%. The percentage change in the area of the rectangle is _____.

A. 3
B. 2
C. 5
D. 35
E. NOTA

12. Find the area enclosed by the system of inequalities:

\[
\begin{cases}
2x + y \leq 4 \\
x - y \geq 5 \\
x \geq 0 \\
y \geq -10
\end{cases}
\]

A. 35.5
B. \(\frac{33}{8}\)
C. \(\frac{34}{8}\)
D. 31.75
E. NOTA

13. A sphere has an area in square units equal to the number of cubic units in its volume. Find the ratio of the circumference of a great circle of the sphere to the area of a great circle of the sphere.

A. \(\frac{3}{4}\)
B. \(\frac{2}{3}\)
C. \(\frac{3}{5}\)
D. \(\frac{1}{\pi}\)
E. NOTA

14. Find the length of the latus rectum of the parabola \(x^2 - 4x - 12y - 32 = 0\).

A. 3
B. 6
C. 9
D. 12
E. NOTA

15. What are the coordinates of the focus of the parabola whose equation is \(y^2 - 6y + 8x + 25 = 0\)?

A. (-2, 3)
B. (-2, 5)
C. (-2, 0)
D. (-2, 3)
E. NOTA
16. An arch is in the form of a semi-ellipse. The arch is 52 meters wide at the base and has a height of 20 meters at its highest point. How wide, in meters, is the arch at a height of 10 meters above the base?

A. 40 B. $26\sqrt{3}$ C. 26 D. $13\sqrt{3}$ E. NOTA

17. What is the volume, in cubic units, of a tetrahedron whose vertices are:
(3, 1, 0) (1, 4, 0) (5, 5, 0) (3, 1, 6)

A. 14 B. 24 C. 42 D. 84 E. NOTA

18. In triangle ABC, angle C has measure 120 degrees, side BC has length 10 units, side AC has length 12. Find the length of side AB.

A. $2\sqrt{91}$ B. $\sqrt{244 - 120\sqrt{3}}$ C. $2\sqrt{41}$ D. $\sqrt{244 + 120\sqrt{3}}$ E. NOTA

19. The graph of $r = \sin \theta$ is a:
A. circle B. parabola C. limacon D. cardioid E. NOTA

20. What is the tangent of the acute angles formed when the two lines whose equations are $3x - 4y = 7$ and $2x + 3y = 8$ intersect?

A. $-17/6$ B. $17/6$ C. $1/6$ D. $17/18$ E. NOTA

21. What is the area, in square units, of the region enclosed by the graph of the parametric equations $x = 8 \cos \theta$ and $y = 6 \sin \theta$?

A. 96π B. 48π C. 12π D. 48 E. NOTA

22. What is the equation of the line tangent to the circle $x^2 + y^2 + 2x - 4y - 5 = 0$ at the point P(2,1)?

A. $3x + y = 7$ B. $x - 3y = -1$ C. $3x - y = 5$ D. $x + 3y = 5$ E. NOTA

23. Suppose the equation for an ellipse is given by $\frac{(x-3)^2}{16} + \frac{(y+2)^2}{b^2} = 1$.
Find b so that the eccentricity is 0.75.

A. 3 B. 6 C. $\sqrt{7}$ D. 5 E. NOTA
24. Which of the following is an asymptote to the hyperbola \(\frac{(y+2)^2}{9} - \frac{(x-3)^2}{16} = 1 \)

A. \(y = \frac{3}{4}x - 3 \)
B. \(y = \frac{-3}{4}x - \frac{17}{4} \)
C. \(y = \frac{3}{4}x - \frac{17}{4} \)
D. \(y = \frac{-3}{4}x - \frac{1}{4} \)
E. NOTA

25. Determine an angle of rotation necessary to eliminate the \(xy \) term:
\[x^2 + xy + 2y^2 + 5x - 3y - 56 = 0 \]

A. \(\frac{3}{8} \pi \)
B. \(\frac{3}{4} \pi \)
C. \(\frac{\pi}{8} \)
D. \(\frac{\pi}{4} \)
E. NOTA

26. Calculate the area inside the cardioid \(r = 1 + \cos \theta \)

A. \(3 \pi \)
B. \(\frac{3}{4} \pi \)
C. \(\frac{3}{2} \pi \)
D. \(\frac{\pi}{2} \)
E. NOTA

27. Find an equation for the hyperbola with eccentricity \(\frac{3}{2} \) and directrix \(x = 2 \).

A. \(r = \frac{6}{2 + 3 \cos \theta} \)
B. \(r = \frac{2}{2 + 3 \cos \theta} \)
C. \(r = \frac{6}{1 + 2 \cos \theta} \)
D. \(r = \frac{3}{1 + 3 \cos \theta} \)
E. NOTA

28. Find the length of the arc of the curve \(x = \frac{8}{3} t^3, \ y = 2t - t^2 \) between \(t = 1 \) and \(t = 3 \).

A. 4
B. 16
C. 12
D. 8
E. NOTA

29. Find the area of a parallelogram having \(v_1 = -i + 2j + 2k \) and \(v_2 = 3i - 2j + k \) as adjacent sides.

A. 3
B. 10
C. \(\sqrt{101} \)
D. \(\sqrt{69} \)
E. NOTA

30. The region in the first quadrant bounded by \(y = \sin x^2 \), the coordinate axes, and the line \(x = b \), \(b > 0 \), is revolved about the y-axis. Find \(b \) such that the volume of the solid generated is \(\frac{\pi}{2} \) cubic units.

A. \(\frac{\pi}{2} \)
B. \(\sqrt[3]{\frac{1}{3}} \)
C. \(-\sqrt[3]{\frac{\pi}{3}} \)
D. \(\sqrt[3]{\frac{\pi}{3}} \)
E. NOTA
Mu Division—ANALYTIC GEOMETRY TOPIC TEST
Answer Key

1. B
2. C
3. D
4. A
5. E
6. B
7. B
8. B
9. B
10. A
11. E
12. A
13. B
14. D
15. E
16. B
17. A
18. A
19. A
20. B
21. B
22. C
23. C
24. C
25. A
26. C
27. A
28. C
29. C
30. D