2002 National Mu Alpha Theta Convention Mu Division–Number Theory Topic Test

1 TT	• (1 1	100 11002		
1. How ma	ny primes are there be	tween 100 and 120?		
A. 5	B. 6	C. 7	D. 8	E. NOTA
2. What is	the greatest common f	actor of 5!, 15!, and 25!	?	
A. 5!	B. 25!	C. 15!	D. 5	E. NOTA
3. How ma	ny positive integer divi	sors does 121 have?		
A. 4	B. 3	C. 2	D. 1	E. NOTA
4. If m and of $n - m$?	d n are positive integer	s such that $m^2 + 49 = 4$	n^2 , then what are all	possible values
A. 1 or 3	B. 1 or 7	C. 1, 7, or 49	D. 1	E. NOTA
5. Given to power, then the I. An intege II. An integ III. An integ IV. An integ	chree integers $i, j, k >$ e product ijk must hav er as a sixth root. ger as an eighth root. ger as a twelfth root. ger as a twenty-fourth r	I such that i is a perference which of the following root.	ct square, j a cube, :	and <i>k</i> a fourth
A. I. only	B. I. and III. only	C. I., II., and III.	D. All four	E. NOTA
6. If a and true?	b are nonnegative inte	gers and 2^a divides 3^b ,	then which of the fol	lowing must be
A. $a = 0$	B. $b = 0$	C. $a \neq 0$	D. $b \neq 0$	E. NOTA
7. How ma	ny perfect squares fall	between 20^3 and 21^3 ?		
A. 6	B. 7	C. 8	D. 9	E. NOTA
8. How ma	ny positive integer pair	m (m, n) satisfy the equ	ation $m^2 = 4n + 3?$	
A. 7	B. 1	C. 0 D. in	finitely many	E. NOTA
-				-
9. What is	the largest prime less	than 1000?		
A. 991	B. 997	C. 983	D. 989	E. NOTA
10. What i	s the least common mu	ltiple of 4^4 , $4!$, and $44?$		
A. 8448	B. 270336	C. 16896	D. 33792	E. NOTA

2002 National Mu Alpha Theta Convention Mu Division–Number Theory Topic Test

11. Find the smallest positive integer n such that $7n$ leaves a remainder of 3 when divid by 5.				
A. 1	B. 2	C. 3	D. 4	E. NOTA
12. Find the	e sum of all positive	integers less than 2	200 which have 9 distinct o	livisors.
A. 332	B. 136	C. 296	D. 232	E. NOTA
13. How ma	any positive divisors	does 9! have?		
A. 80	B. 16	C. 512	D. 160	E. NOTA
14. What is pair of positive i	the largest positive integers n and m ?	integer that cannot	be expressed in the form 5	5m + 7m for some
A. 23	B. 35	C. 47	D. 58	E. NOTA
15. Order fr	rom least to greatest	:		
	x	$=2^{2^{2^{2^{2}}}}, y=3^{3^{3^{3}}},$	$z = 4^{4^4}$.	
A. x, y, z	B. y, z, x	C. z, x, y	D. x, z, y	E. NOTA
16. What is	the largest value of	n such that 2002! i	s evenly divisible by 20^n ?	
A. 1995	B. 1321	C. 500	D. 289	E. NOTA
17. How ma	any pairs of positive	integers (m, n) satisf	sfy	
		$m^3 + 63n^3 = 77770$	0006?	
A. 12	B. 1	C. 0	D. infinitely many	E. NOTA
18. The non $k^2 \equiv n \pmod{m}$	negative integer n is . How many nonneg	s a quadratic residue gative integers less t	e (mod m) if there is an inthe han 103 are quadratic resi	teger k such that dues (mod 103)?
A. 52	B. 51	C. 50	D. 53	E. NOTA
19. How ma this leading 6 is	any integers less that deleted, the remain	n one million have i ing integer is $1/25$ t	nitial digit 6 and have the he original number?	property that if
A. 64	B. 16	C. 4	D. 1	E. NOTA
20. How ma	ny four-digit intege	rs are perfect square	es and have only even digi	ts?

А	3	B. 4	C. 5	D. 6	E. NOTA

21. How many pairs of integers (m, n) satisfy the equation

$$\frac{1}{m} + \frac{1}{n} = \frac{1}{10}?$$

A. 17 B. 18 C. 8 D. 9 E. NOTA

22. What is the tens digit of 7^{7^7} ?

A. 0 B. 2 C. 4 D. 6 E. NOTA

23. The 9th and 10th grade chess tournament has n total students. There are 10 times as many 10th graders as 9th graders in the tournament. Every student plays every other student once, and in each game either the winner is awarded one point and the loser none or the competitors draw and each gets 1/2 point. If the 10th graders together amass only 4.5 times as many points as the ninth graders, what are the possible positive values of n?

A. II OI 22 D. II $O. 22$ D. any positive integer divisible by II E. NO.	A. 11 or 22	B. 11	C. 22	D. any positive integer divisible by 11	E. NOTA
--	-------------	-------	-------	---	---------

24. For how many positive integers m less than 1000 is $m^{3^{10}-3^9} - 1$ divisible by 3^{10} ?					
A. 333	B. 666	C. 999	D. 1	E. NOTA	
25. *What is the sum of the digits of the sum of the digits of the sum of the digits of 4444^{4444} ?					
A. 25	B. 16	C. 11	D. 7	E. NOTA	
*=Tie-break	er				