
Solutions
2002 Sequences and Series Topic Test – Mu Division

1. Evaluate the sum ∑
=

+
n

k
kk

1
)1( .

Solution: Using the sum of the first n  integers and the sum of the squares of the
first n  integers.
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      Solution:  Telescoping sums is the trick here.    
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3. Evaluate the product ∏
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        Solution: Experimental mathematics, i.e., try 4,3,2=n  and it should become
        clear that (B) is a good candidate for the product.  Mathematical induction will show
        this as will considering 
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4. Find the limit of "++= 22
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       Solution:  Use sum of first n integers and algebra.
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8.     The series ( )∑
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−
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nk  converges for which values of k ?

       Solution: This is a geometric series with .32 −= kr  The series converges for all  
       values of k for which .132 <−k This is equivalent to 131 2 <−<− k  or

      .42 2 << k  Taking square roots gives 22 −<<− k  or 22 << k

       (A)  -1< k  < 1   [(B) 2 2k− < < − or 22 << k ] (C) 22 <<− k
             
       (D) 2−<k  or 2>k   (E) NOTA

9. The Fibonacci sequence satisfies the recurrence relation 21 −− += kkk FFF , for

all integers ,2≥k  with 10 =F  and 11 =F .  Evaluate the 
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10. Which fraction represents the repeating decimal …321321.0 ?

        Solution:  Another geometric series problem.
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11. Evaluate:  ( ) .
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        Solution: The power series above is that of .1−−xe  Note that the 0=k  term
        is missing from this power series.

         (A) xe     (B) xe−     (C) xe+1   (D) 1+xe   [(E) NOTA]

12. Which of the following is true of the series ( ) ?
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        Solution:  By the alternating series test this is a convergent series, but  the series
         formed by taking the absolute value of each of its terms give a divergent series.      
         Hence it is a conditionally convergent series.

(A) absolutely convergent  (B) divergent  [(C)  conditionally convergent]

                    (D) almost convergent  (E)  NOTA
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        Solution:  Note the the Maclaurin expansion for )cos(x  can be written as 
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         (A) ( )2cos   (B) ( )2sin    [(C) ( )2cos ]  (D) ( )2ln   (E) NOTA

14. If  ∑
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M and J  such that jj Mba ≤  for Jj ≥ , then which of the following

statements describes the convergence of the series ∑
∞

=0j
ja :

        Solution:  From the given hypothesis we have that the series ∑
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ja is absolutely

        convergent by the comparison test.

(A) conditionally convergent  (B)  uniformly convergent  [(C) absolutely
convergent ]  (D)  divergent  (E)  NOTA



15. Evaluate:  ∑
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        Solution:  Another telescoping problem, but an interesting expansion:
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16. Evaluate the limit ( ) n
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       Hence the thn  power of this ratio also has limit 0.
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       Solution: Telescoping series with thn  partial sum given by
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18. The th10  term of an arithmetic sequence is 52 and the th15 is 77.  Find the
         th50  term of this sequence.

        Solution:  Letting the thn  term nbasn +=  we have the system of equations
        5210 =+ ba  and .7715 =+ ba   Solving this system for a and b give
        .52 nsn +=  So the th50  term is .252550250 =⋅+=s

[(A) 252]  (B) 250  (C)  302  (D) –48  (E)  NOTA



19. The Maclaurin series for xx ee 3+  is

        Solution: Adding the Maclaurin series for xe and xe3  gives 
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20. Evaluating the improper integral ( )dxxx
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        Solution: Since the improper integral does not exist, we have that the series is
        not absolutely convergent, but this is not one of the choices (A)-(D) so it is (E).

(A) sums to ( )( )2lnln .  (B) converges absolutely.  (C) diverges

                  (D) converges conditionally.  [(E) NOTA]

       21.   Applying the alternating series test to ( )∑
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       Solution: The thn  of this series goes to 0 and it alternates in sign, so it is a convergent
        series.

              (A) converges absolutely.  [(B) converges.]  (C) diverges.  
              (D) does not converge absolutely.  (E) NOTA.
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        Solution: (E) since we are given a power series in the variable x  and (A)
        through (D) are constants.
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  24.  Which of the following describes the convergence of ( )∑
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          Solution: By the ratio test this series diverges.  Consider,
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(A) converges  (B) converges absolutely  (C)  converges conditionally 
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   27.  What are the terms up to degree 4 in the Maclaurin series of ( )
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    28.  At the first of each month, for ten years, $1,000 is deposited into a saving
                  account earning 6% a year compounded monthly.  How much money is
                  in this account when the last deposit is made?   Round to nearest dollar.

           Solution:  Here nS is the amount in the account at the start of each month.
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    (A) $6,958,240  (B) $165,699  (C)  $48,000  [(D) $163,879]  (E) NOTA

     29.  Which is true of the series ∑
∞

=1 2
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             Solution:  This is a p-series with p=3/2 > 1 and hence a convergent series.
         

[(A) it converges.]  (B) its sum is 
π
3 .  (C) it is conditionally convergent

(D) it is divergent.  (E) NOTA

     30.  Which is true for the sequence 
( ) 
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             Solution:  This sequence oscillates between the values 5/4 and 5/2 and hence it is
             divergent by oscillation.

(A) it converges to
3
5 .  (B) it is unbounded. [(C) it is divergent by oscillation]

                   (D) it converges to 15
4

  (E)  NOTA

 



TIEBREAKER:
Solution:  First note that the thν term of this series is given by
   
                             ( )ν

ν
lnaa =

                                  ( ) ( )νlnln ae=
                                  ( ) ( )ae lnln ν=
                                  ( ).ln aν=

Thus, this is a −p series with ( )ap ln=  and it converges when ( ) .1ln −<= ap  This is
true for all .1−< ea  
                         

               
      

      

    

   
                
       
                 

 

    


