Solutions
2002 Sequences and Series Topic Test – Mu Division

1. Evaluate the sum \(\sum_{k=1}^{n} k(k+1) \).

Solution: Using the sum of the first \(n \) integers and the sum of the squares of the first \(n \) integers.

\[
\sum_{k=1}^{n} k(k+1) = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k = \frac{(n)(n+1)(2n+1)}{6} + \frac{(n)(n+1)}{2} = \frac{n(n+1)(n+2)}{3}.
\]

(A) \(\frac{n(n^2+1)}{3} \) [(B) \(\frac{n(n+1)(n+2)}{3} \)] (C) \(\frac{2n(n^2-1)}{3} \) (D) \(\frac{n^2(n+1)}{2} \) (E) NOTA

2. Evaluate the infinite series \(\sum_{k=1}^{\infty} \left(\frac{k}{k+1} - \frac{k+1}{k+2} \right) \).

Solution: Telescoping sums is the trick here.

Let \(S_n = \sum_{k=1}^{n} \left(\frac{k}{k+1} - \frac{k+1}{k+2} \right) = \frac{1}{2} - \frac{n+1}{n+2} \rightarrow -\frac{1}{2} \) as \(n \rightarrow \infty \).

(A) divergent (B) \(\frac{1}{2} \) (C) 0 [(D) \(\frac{1}{2} \)] (E) NOTA

3. Evaluate the product \(\prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right) \).

Solution: Experimental mathematics, i.e., try \(n = 2,3,4 \) and it should become clear that (B) is a good candidate for the product. Mathematical induction will show this as well considering

\[
\log \left(\prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right) \right) = \sum_{k=2}^{n} \log \left(1 - \frac{1}{k^2} \right)
\]

\[
= \sum_{k=2}^{n} \log \left(\frac{k^2 - 1}{k^2} \right)
\]

\[
= \sum_{k=2}^{n} (-2 \log(k) + \log(k+1) + \log(k-1)) = -\log(n) + \log(n+1) - \log(2)
\]

\[
= \log \left(\frac{n+1}{2n} \right).
\]

(A) \(\frac{2n-1}{2n} \) [(B) \(\frac{n+1}{2n} \)] (C) \(\frac{2n-1}{n^2} \) (D) \(\frac{n^2-1}{4} \) (E) NOTA
4. Find the limit of \(s_n = \frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2} \) as \(n \to \infty \). \(n = 1,2,3,\cdots \).

Solution: Use sum of first \(n \) integers and algebra.

\[
s_n = \frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{1}{2} \left[1 + \frac{1}{n} \right] \to \frac{1}{2} \text{ as } n \to \infty.
\]

(A) 2 (B) 0 (C) diverges [(D) \(\frac{1}{2} \)] (E) NOTA

5. Find the limit of \(s_n = 1 - \frac{1}{2} + \frac{1}{4} - \cdots + (-\frac{1}{2})^n \) as \(n \to \infty \). \(n = 1,2,3,\cdots \).

Solution: Geometric series with \(r = -\frac{1}{2} \). Thus, \(s_n = \frac{1}{1-\left(-\frac{1}{2}\right)} = \frac{2}{3} \).

[(A) \(\frac{2}{3} \)] (B) 2 (C) \(\frac{1}{3} \) (D) \(\frac{1}{2} \) (E) NOTA

6. Evaluate the limit, \(\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) \).

Solution: Multiple numerator and denominator by \(\left(\sqrt{n+1} + \sqrt{n} \right) \).

\[
\sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) = \frac{\sqrt{n+1} - n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{1 + \frac{1}{n}} + \sqrt{1}} \to \frac{1}{2} \text{ as } n \to \infty.
\]

(A) diverges (B) 2 (C) 0 [(D) \(\frac{1}{2} \)] (E) NOTA

7. Evaluate: \(\lim_{n \to \infty} \frac{1 - \left(1 - \frac{1}{n} \right)^3}{1 - \left(1 - \frac{1}{n} \right)} \).

Solution: Note that \(\frac{1-a^3}{1-a} = 1 + a + a^2 \). Thus,

\[
\lim_{n \to \infty} \frac{1 - \left(1 - \frac{1}{n} \right)^3}{1 - \left(1 - \frac{1}{n} \right)} = \lim_{n \to \infty} 1 + \left(1 - \frac{1}{n} \right) + \left(1 - \frac{1}{n} \right)^2 = 3.
\]

(A) 0 (B) undefined (C) \(\frac{1}{3} \) [(D) 3] (E) NOTA
8. The series \(\sum_{n=0}^{\infty} (k^2 - 3)^n \) converges for which values of \(k \)?

Solution: This is a geometric series with \(r = k^2 - 3 \). The series converges for all values of \(k \) for which \(|k^2 - 3| < 1 \). This is equivalent to \(-1 < k^2 - 3 < 1\) or \(2 < k^2 < 4 \). Taking square roots gives \(-2 < k < -\sqrt{2} \) or \(\sqrt{2} < k < 2 \)

(A) \(-1 < k < 1\) (B) \(-2 < k < -\sqrt{2} \) or \(\sqrt{2} < k < 2 \) (C) \(-\sqrt{2} < k < \sqrt{2} \)

(D) \(k < -2 \) or \(k > 2 \) (E) NOTA

9. The Fibonacci sequence satisfies the recurrence relation \(F_k = F_{k-1} + F_{k-2} \), for all integers \(k \geq 2 \), with \(F_0 = 1 \) and \(F_1 = 1 \). Evaluate the limit \(\lim_{k\to\infty} \frac{F_{k+1}}{F_k} \), assuming this limit exists.

Solution: Let \(L = \lim_{k\to\infty} \frac{F_{k+1}}{F_k} \) and recognize that also \(L = \lim_{k\to\infty} \frac{F_k}{F_{k-1}} \). Then,

\[
L = \lim_{k\to\infty} \frac{F_{k+1}}{F_k} = \lim_{k\to\infty} \frac{F_k + F_{k-1}}{F_k} = \lim_{k\to\infty} 1 + \frac{F_{k-1}}{F_k} = 1 + \frac{1}{L}.
\]

Now solving for \(L \) gives

\[
L = \frac{1 + \sqrt{5}}{2}.
\]

Since the terms of this sequence are positive \(L = \frac{1 + \sqrt{5}}{2} \).

(A) \(\frac{1 - \sqrt{5}}{2} \) (B) 1 (C) \(\frac{\sqrt{5}}{2} \) (D) \(\frac{1 + \sqrt{5}}{2} \) (E) NOTA

10. Which fraction represents the repeating decimal \(0.321321\ldots \)?

Solution: Another geometric series problem.

\[
0.321321\ldots = \sum_{k=0}^{\infty} .321 \left(\frac{1}{1000} \right)^k = .321 \left[\frac{1}{1 - \frac{1}{1000}} \right] = .321 \frac{1000}{999} = \frac{321}{999}.
\]

(A) \(\frac{999}{321} \) (B) \(\frac{321}{99} \) (C) \(\frac{321}{999} \) (D) \(\frac{1000}{321} \) (E) NOTA
11. Evaluate: \(\sum_{k=1}^{\infty} \frac{(-x)^k}{k!} \).

Solution: The power series above is that of \(e^{-x} - 1 \). Note that the \(k = 0 \) term is missing from this power series.

(A) \(e^x \) (B) \(e^{-x} \) (C) \(1 + e^x \) (D) \(e^x + 1 \) [E) NOTA]

12. Which of the following is true of the series \(\sum_{n=1}^{\infty} \frac{(-1)^n}{1 + 5n} \)?

Solution: By the alternating series test this is a convergent series, but the series formed by taking the absolute value of each of its terms give a divergent series. Hence it is a conditionally convergent series.

(A) absolutely convergent (B) divergent [(C) conditionally convergent]

(D) almost convergent (E) NOTA

13. Evaluate: \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2n-2}}{(2n-2)!} \).

Solution: Note the the Maclaurin expansion for \(\cos(x) \) can be written as

\[
\cos(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-2}}{(2n-2)!}, \quad \text{so} \quad \cos(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2n-2}}{(2n-2)!}.
\]

(A) \(\cos(\sqrt{2}) \) (B) \(\sin(\sqrt{2}) \) [(C) \(\cos(2) \)] (D) \(\ln(2) \) (E) NOTA

14. If \(\sum_{j=0}^{\infty} b_j \) is a convergent series of nonnegative terms and there are constants \(M \) and \(J \) such that \(|a_j| \leq Mb_j \) for \(j \geq J \), then which of the following statements describes the convergence of the series \(\sum_{j=0}^{\infty} a_j \) :

Solution: From the given hypothesis we have that the series \(\sum_{j=0}^{\infty} a_j \) is absolutely convergent by the comparison test.

(A) conditionally convergent (B) uniformly convergent [(C) absolutely convergent] (D) divergent (E) NOTA
15. Evaluate: $\sum_{k=3}^{\infty} \left[\sin \left(\frac{4}{k} \right) - \sin \left(\frac{4}{k+2} \right) \right]$.

Solution: Another telescoping problem, but an interesting expansion:

$$\sum_{k=3}^{n} \left[\sin \left(\frac{4}{k} \right) - \sin \left(\frac{4}{k+2} \right) \right] = \sin \left(\frac{4}{3} \right) + \sin(1) - \sin \left(\frac{4}{n+1} \right) - \sin \left(\frac{4}{n+2} \right)$$

$\rightarrow \sin \left(\frac{4}{3} \right) + \sin(1) \text{ as } n \rightarrow \infty.$

(A) $\sin \left(\frac{4}{3} \right)$ (B) 0 [(C) $\sin \left(\frac{4}{3} \right) + \sin(1)$] (D) $\sin(1)$ (E) NOTA

16. Evaluate the limit $\lim_{n \to \infty} \left(\frac{\arctan(n^2)}{n^2 + 1} \right)^n$.

Solution: Since $|\arctan(n^2)| \leq \frac{\pi}{2}$ then the ratio $\frac{\arctan(n^2)}{n^2 + 1} \rightarrow 0$ as $n \rightarrow \infty$.

Hence the n^{th} power of this ratio also has limit 0.

(A) π [(B) 0] (C) $\frac{\pi}{2}$ (D) e (E) NOTA

17. Evaluate: $\sum_{j=1}^{\infty} \frac{1}{j(j+1)}$.

Solution: Telescoping series with n^{th} partial sum given by

$$S_n = \sum_{j=1}^{n} \frac{1}{j(j+1)} = \sum_{j=1}^{n} \left[\frac{1}{j} - \frac{1}{j+1} \right] = 1 - \frac{1}{n+1} \rightarrow 1 \text{ as } n \rightarrow \infty.$$

(A) 2 [(B) 1] (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) NOTA

18. The 10^{th} term of an arithmetic sequence is 52 and the 15^{th} is 77. Find the 50^{th} term of this sequence.

Solution: Letting the n^{th} term $s_n = a + nb$ we have the system of equations $a + 10b = 52$ and $a + 15b = 77$. Solving this system for a and b give $s_n = 2 + 5n$. So the 50^{th} term is $s_{50} = 2 + 50 \cdot 5 = 252$.

[(A) 252] (B) 250 (C) 302 (D) –48 (E) NOTA
19. The Maclaurin series for $e^x + e^{3x}$ is

Solution: Adding the Maclaurin series for e^x and e^{3x} gives

$$e^x + e^{3x} = \sum_{j=0}^{\infty} \frac{x^j}{j!} + \sum_{j=0}^{\infty} \frac{(3x)^j}{j!} = \sum_{j=0}^{\infty} \frac{(1 + 3)^j}{j!} x^j.$$

(A) $\sum_{j=0}^{\infty} \frac{x^j}{j!} j^3$ [B) $\sum_{j=0}^{\infty} \frac{(1 + 3)^j}{j!} x^j$] (C) $\sum_{j=0}^{\infty} \frac{j!}{j} x^j$ (D) $\sum_{j=0}^{\infty} \frac{(1 + 3)^j}{j!} x^{j-1}$

(E) NOTA

20. Evaluating the improper integral $\int_{b=\pi}^{b=\pi} \frac{1}{x \ln(x)} dx$ shows that $\sum_{j=2}^{\infty} \frac{(-1)^j}{j \ln(j)}$

Solution: Since the improper integral does not exist, we have that the series is not absolutely convergent, but this is not one of the choices (A)-(D) so it is (E).

(A) sums to $\ln(\ln(2))$. (B) converges absolutely. (C) diverges.

(D) converges conditionally. [(E) NOTA]

21. Applying the alternating series test to $\sum_{j=2}^{\infty} \frac{(-1)^j}{j \ln j}$ shows this series

Solution: The n^{th} of this series goes to 0 and it alternates in sign, so it is a convergent series.

(A) converges absolutely. [(B) converges.] (C) diverges.

(D) does not converge absolutely. (E) NOTA.

22. Evaluate $\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$.

Solution: (E) since we are given a power series in the variable x and (A) through (D) are constants.

(A) e (B) e^2 (C) $2e$ (D) e^{-2} [(E) NOTA]
23. Evaluate \(\sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n2^n} \).

Solution: This is the Taylor series for \(\ln(1 + x) \) evaluated at \(x = -\frac{1}{2} \). Note that

\[
\ln\left(\frac{1}{2}\right) = -\ln(2) \quad \text{and} \quad \ln(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n,
\]

so letting \(x = -\frac{1}{2} \) gives

\[
-\ln(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n \cdot 2^n}.
\]

(A) \(\ln(2) \) [(B) \(-\ln(2) \)] (C) 0 (D) \(\ln(3) \) (E) NOTA

24. Which of the following describes the convergence of \(\sum_{k=0}^{\infty} \frac{(-2)^k}{k^3} \).

Solution: By the ratio test this series diverges. Consider,

\[
\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{(-2)^{k+1}}{(k+1)^3} \right| = 2 \left(\frac{k}{k+1} \right)^3 \to 2 \quad \text{as} \quad k \to \infty.
\]

Since this limit is greater than 1 then by the ratio test the series is divergent.

(A) converges (B) converges absolutely (C) converges conditionally

[(D) diverges] (E) NOTA

25. Evaluate \(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)} \).

Solution: The Maclaurin expansion for \(\sin(x) \) is given by

\[
\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1},
\]

thus the sum of the series is \(\sin(1) \).

(A) 0 [(B) \(\sin(1) \)] (C) \(\cos(1) \) (D) diverges (E) NOTA
26. The interval of convergence of \(\sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{x}{3} \right)^k \) is

Solution: For \(a_k = \frac{1}{k} \left(\frac{x}{3} \right)^k \), consider the ratio

\[
\frac{a_{k+1}}{a_k} = \frac{1}{1 + \frac{x}{3}} \rightarrow \frac{|x|}{3} \text{ as } k \to \infty.
\]

Thus, \(\left| \frac{x}{3} \right| < 1 \), or when \(|x| < 3 \). Now we only have to check the end points. At \(x = 3 \) this series reduces to the harmonic series which is divergent. At \(x = -3 \) it reduces to the alternating series \(\sum_{k=1}^{\infty} (-1)^k \frac{x}{k} \) which is convergent by the alternating series test.

Thus, \([-3,3)\) is the interval of convergence.

[(A) \([-3,3)\)] (B) \([-\frac{1}{3}, \frac{1}{3}]\) (C) \((-3,3]\) (D) \([-1,1]\) (E) NOTA

27. What are the terms up to degree 4 in the Maclaurin series of \(\frac{\sin(x)}{1-x} \)?

Solution: Either divide \(\frac{\sin(x)}{1-x} = \frac{x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots}{1-x} \) which up to 4th order gives terms \(x + x^2 + \frac{5}{6} x^3 + \frac{5}{6} x^4 \) or multiple the Maclaurin expansions of \(\frac{1}{1-x} \) and \(\sin(x) \), \(1 + x + x^2 + x^3 + \cdots \left(x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots \right) \) which in either case gives \(\frac{\sin(x)}{1-x} \) as \(x + x^2 + \frac{5}{6} x^3 + \frac{5}{6} x^4 \) up to terms of order four.

(A) \(x - x^2 - \frac{7}{6} x^3 - \frac{5}{6} x^4 \) (B) \(x - x^2 - \frac{x^3}{6} + \frac{x^4}{6} \) ([C) \(x + x^2 + \frac{5}{6} x^3 + \frac{5}{6} x^4 \)]

(D) \(x + x^2 + \frac{x^3}{6} + \frac{x^4}{6} \) (E) NOTA
28. At the first of each month, for ten years, $1,000 is deposited into a saving account earning 6% a year compounded monthly. How much money is in this account when the last deposit is made? Round to nearest dollar.

Solution: Here S_n is the amount in the account at the start of each month.

\[\begin{align*}
S_1 &= 1000. \\
S_2 &= 1000 \left(1 + \frac{0.06}{12}\right) + 1000. \\
S_3 &= 1000 \left(1.005\right) + 1000[1.005 + 1000 \\
&= 1000(1.005)^2 + 1.005 + 1]. \\
& \vdots \\
S_{120} &= \sum_{k=0}^{120} 1000(1.005)^{k-1} \\
&= \frac{1000[(1.005)^{120} - 1]}{1.005 - 1} \\
& \approx 163,879.
\end{align*} \]

(A) $6,958,240$ (B) $165,699$ (C) $48,000$ [(D) $163,879$] (E) NOTA

29. Which is true of the series \[\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}?\]

Solution: This is a p-series with $p=3/2 > 1$ and hence a convergent series.

[(A) it converges.] (B) its sum is \(\frac{3}{\pi} \). (C) it is conditionally convergent
(D) it is divergent. (E) NOTA

30. Which is true for the sequence \(\left\{ \frac{5}{3 + (-1)^n} \right\} \)?

Solution: This sequence oscillates between the values 5/4 and 5/2 and hence it is divergent by oscillation.

(A) it converges to \(\frac{5}{3} \). (B) it is unbounded. [(C) it is divergent by oscillation]
(D) it converges to \(\frac{15}{4} \) (E) NOTA
TIEBREAKER:
Solution: First note that the ν^{th} term of this series is given by

$$a_\nu = a^{\ln(\nu)}$$

$$= e^{\ln(a)\ln(\nu)}$$

$$= e^{\ln(\nu)\ln(a)}$$

$$= \nu^{\ln(a)}.$$

Thus, this is a p-series with $p = \ln(a)$ and it converges when $p = \ln(a) < -1$. This is true for all $a < e^{-1}$.