1. \(\triangle ADE \) is equilateral:
\[
\text{Area} = \frac{\sqrt{3}}{4} \cdot 3^2 = A
\]

2. \(A \quad \) The intersection can be a plane, or a line. II is only the definition of a plane; two intersecting lines can’t be an intersection.

3. Taking \(n = 9 \),
\[
\frac{n(n-3)}{2} + 180(n-2) + 360 + 9 + 1 = 1657 \Rightarrow E
\]

4. \((x - 3)^2 + (y - 7)^2 = 169 \), \(r = 13 \). Twice circumference = \(52\pi \) \(\Rightarrow B \)

5. Area of framed picture – area of picture = area of frame
\[
36(26) - 30(20) = 336 \quad C
\]

6. \(A = \frac{1}{2} \) (product of diagonals) = 65/2 \(D \)

7. \(\pi r^2 = 2\pi r \), \(2 \quad B \)

8. \(\frac{4}{3}\pi \left(\sqrt{e\pi} \right)^3 = \frac{\pi 5h}{3} \), \(h = 19.96 \ldots \) Slant = \(\sqrt{h^2 + 5} = 20.0892 \ldots \Rightarrow D \)

9. Circle is centered at (3, 0) with radius 3. Distance from point to center is \(\sqrt{50} \). This is the hypotenuse of a triangle, with one leg of length 3, and other \(x \). “\(x \)” is the length we want: \(\sqrt{41} \Rightarrow A \)

10. \(2(CD + 2) = 9 \), \(CD = 5/2 \). Triangle with side lengths 3, 5, and 9/2. Heron’s formula (maybe a program on calculator) yields 6.66585 \(B \)

11. Radius of circle is 2:
\[
\frac{16 - 4\pi}{56\pi} = 0.0195 \Rightarrow C
\]

12. Law of sines:
\[
\frac{\sin 30^\circ}{4} = \frac{\sin 45^\circ}{x}, \quad x = 4\sqrt{2} \Rightarrow C
\]

13. \(C \)

14. \(\frac{180(n-2)}{n} = 171; \quad n = 40 \quad A \)

15. \(A = 4\pi r^2 \), \(V = \frac{4}{3}\pi r^3 \); \(288\pi = \frac{4}{3}\pi r^3 \); \(r = 6 \); \(A = 4\pi (6)^2 = 144\pi \quad E \)
16. $3 < x < 21$ This interval contains 17 integer values

17. \boxed{B}

18. $(-10, -1), (-8, 2), (-6, -2)$ \boxed{A}

19. $r = \sqrt{7.5^2 + 3.1^2}$, Area of octagon is $\frac{1}{2}(49.6)(7.5)$, so we have $\pi r^2 - 186 = 20.90...$ \boxed{B}

20. $\frac{4}{3} \pi \left(\frac{1}{2} r\right)^3 = \frac{1}{8}$ \boxed{D}

21. We get $2 \cdot 3 \cdot \frac{1}{2} \cdot 3 \cdot \frac{2\sqrt{2}}{\sqrt{2}} \cdot \frac{\pi}{4\pi} = 2 \cdot 3 \cdot \frac{1}{2} \cdot 3 \cdot \frac{1}{2} = 486$ \boxed{C}

22. Triangular numbers: $\frac{n(n+1)}{2}$, count up to the thirteenth prime number. So $210 + 41$ \boxed{E}

23. $CP = 2PE$, $AP = 2PD$, so $4 + 7 + 6 + 10.5 = 27.5$ \boxed{D}

24. $lw=18, \ wh=15, \ lh=30$. $w=18/l$, $18/l \times h = 15$; $l = 6h/5$; $6h/5 \times h = 30$; $h = 5, \ w = 3, \ l = 6$; $V= (5)(3)(6) = 90$ \boxed{B}

25. Equation of the line is $x - 7y = 13$. Midpoint is $(1/4, -13/4)$. Distance is the square root of 40. Slope is 19. Answer: \boxed{B}

26. Area of square $= 25 \times 25 = 625$. Area of circle $= \pi \left(\frac{25\sqrt{2}}{2}\right)^2 = \frac{625\pi}{2}$; $\frac{625\pi}{2} = \frac{2}{\pi}$; To change to percentage, multiply by 100. $\frac{200}{\pi}$ \boxed{C}

27. It works for any angle: $\sin^2 x + \cos^2 x = 1$ \boxed{D}

28. The area of the triangle is 16.5. The area of the pentagon is 72. \boxed{B}

29. Using the formula for volume of icosahedron given side length “a”: $\frac{5a^3(3 + \sqrt{5})}{12}$ \boxed{A}
30. Cone of radius 6 and height 4: 48π

Tie Breakers

14-sided polygon, interior angle of $\frac{1080}{7}$. Using Area = .5ab(sinC),

$$A = .5(4)(4)\sin(\frac{1080}{7}) = 3.4710$$