2002 National Theta Geometry Test Solutions

1.
$$\triangle ADE$$
 is equilateral: $Area = \frac{\sqrt{3}}{4} \cdot 3^2 = \boxed{A}$

2. A The intersection can be a plane, or a line. It is only the definition of a plane; two intersecting lines can't be an intersection.

3. Taking n = 9,
$$\frac{n(n-3)}{2} + 180(n-2) + 360 + 9 + 1 \Rightarrow 1657 \Rightarrow \boxed{E}$$

4.
$$(x-3)^2 + (y-7)^2 = 169$$
, r = 13. Twice circumference = $52\pi \Rightarrow \boxed{B}$

- 5. Area of framed picture area of picture = area of frame 36(26) 30(20) = 336
- 6. A = $\frac{1}{2}$ (product of diagonals) = 65/2 \overline{D}

7.
$$\pi r^2 = 2\pi r$$
, 2 | B|

8.
$$\frac{4}{3}\pi \left(\sqrt{e\pi}\right)^3 = \frac{\pi 5h}{3}, h = 19.96...$$
 Slant $= \sqrt{h^2 + 5} = 20.0892... \Rightarrow \boxed{D}$

- 9. Circle is centered at (3, 0) with radius 3. Distance from point to center is $\sqrt{50}$. This is the hypotenuse of a triangle, with one leg of length 3, and other x. "x" is the length we want: $\sqrt{41} \Rightarrow \boxed{A}$
- 10. 2(CD + 2) = 9, CD = 5/2. Triangle with side lengths 3, 5, and 9/2. Heron's formula (maybe a program on calculator) yields 6.66585 \boxed{B}

11. Radius of circle is 2:
$$\frac{16-4\pi}{56\pi} = 0.0195 \Rightarrow \boxed{C}$$

12. Law of sines:
$$\frac{\sin 30^{\circ}}{4} = \frac{\sin 45^{\circ}}{x}, x = 4\sqrt{2} \Rightarrow \boxed{C}$$

14.
$$\frac{180(n-2)}{n} = 171; \quad n = 40$$

15.
$$A = 4\pi r^2$$
, $V = \frac{4}{3}\pi r^3$; $288\pi = \frac{4}{3}\pi r^3$; $r=6$; $A = 4\pi(6)^2 = 144\pi$

- 16. 3<x<21 This interval contains 17 integer values B
- 17. B
- 18. (-10, -1), (-8, 2), (-6, -2) A
- 19. $r = \sqrt{7.5^2 + 3.1^2}$, Area of octagon is $\frac{1}{2}$ (49.6)(7.5), so we have $\pi r^2 186 = 20.90...$
- 20. $\frac{\frac{4}{3}\pi(\frac{1}{2}r)^3}{\frac{4}{3}\pi r^3} = \frac{1}{8}$ \[\overline{D}\]
- 21. We get $2 \cdot 3 \cdot \frac{1}{2} \cdot 2 \cdot 3 \cdot \left(\frac{2\sqrt{2}}{\sqrt{2}}\right)^2 \cdot \frac{\pi}{4\pi} \cdot \frac{1}{2} \cdot 2 \cdot 3 \cdot \frac{1}{2} \cdot 3 \cdot 6 = 486$ C
- 22. Triangular numbers: $\frac{n(n+1)}{2}$, count up to the thirteenth prime number. So 210+41 \boxed{E}
- 23. CP = 2PE, AP = 2PD, so $4 + 7 + 6 + 10.5 = 27.5 \ \boxed{D}$
- 24. lw=18, wh=15, lh=30. w=18/l, 18/l*h=15; l=6h/5; 6h/5*h=30; h=5, w=3, l=6; V=(5)(3)(6)=90
- 25. Equation of the line is x 7y = 13. Midpoint is (1/4, -13/4). Distance is the square root of 40. Slope is 19. Answer: \boxed{B}
- 26. Area of square = 25*25 = 625. Area of circle =

$$\pi \left(\frac{25\sqrt{2}}{2}\right)^2 = \frac{625\pi}{2}$$
; $\frac{625}{625\pi} = \frac{2}{\pi}$; To change to percentage, multiply by 100. $\frac{200}{\pi}$

- 27. It works for any angle: $\sin^2 x + \cos^2 x = 1$
- 28. The area of the triangle is 16.5 . The area of the pentagon is 72. $\boxed{\textit{B}}$
- 29. Using the formula for volume of icosahedron given side length "a":

$$\frac{5a^3(3+\sqrt{5})}{12} \Rightarrow \boxed{A}$$

30. Cone of radius 6 and height 4: 48π $\boxed{\textit{B}}$

Tie Breakers

14-sided polygon, interior angle of $\frac{1080}{7}$. Using Area = .5ab(sinC), A = .5(4)(4)sin(1080/7) = 3.4710