<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
</tr>
</tbody>
</table>
| **2** B | \[
\begin{align*}
2 & \quad 1 & -1 \\
5 & \quad 0 & -3 \\
1 & \quad -2 & 1 \\
\end{align*}
\] \(|-10| = 10 |
| **3** D | There are 12 minutes between the 43 minute mark and the 11 hour mark. This 12/60 of the circle. There is an additional angle caused by the movement of the hour hand. This is 43/60 or the 5 minutes between 12 and 12. So total fraction of the circle moved is the sum of these two fractions. Multiply by \(2\pi \) to convert to radians.
\[
\left(\frac{12}{60} + \frac{43}{60} \right) \cdot 2\pi = 1.631882
\]
| **4** B | \(49 \cdot 4 + 2 = 198 \) |
| **5** B | \[e^{-d} = \tan\left(\frac{\pi}{4} \right) = \tan\left(\frac{\pi}{8} \right) = \sqrt{2} - 1 \] \(-d = \ln(\sqrt{2} - 1)\) \(d = \ln(\sqrt{2} + 1)\) |
| **6** C | \(2^{1001} \) |
| **7** E | None are always true |
| **8** C | \(z = re^{i\theta} \quad z = i \)
\(i = 1 \cdot e^{i\frac{\pi}{2}} \) so
\(\ln i = \ln\left(e^{i\frac{\pi}{2}} \right) = i \frac{\pi}{2} \)
\(i' = e^{i\ln i} = e^{i\cdot\left(0, \frac{\pi}{2}\right)} = e^{-\frac{\pi}{2}} = \frac{1}{\sqrt{e^{\pi}}} \)
\(\frac{\sqrt{e^{\pi}}}{e^{\pi}} \) |
| **9** A | For all values of \(n \), the answer is 0 |
| **10** D | \(p(x)=5 \) is equivalent to \(p(x)-5=0 \). The constant 5 doesn’t change the degree so \(p(x)-5 \) is of the same degree as \(p(x) \) (which is \(\leq 4 \)). If \(p(x) \) is not equal to the constant function \(y=0 \), it can have at most 4 roots, and the problem says that we must be able to find 5 distinct. If the function is the constant function \(y=0 \), then every number is a root, so we can find the five that we need (there are more!). Since \(p(x) \) is \(y=0 \), then the \(p(x)=5 \) is the constant function \(y=5 \), so \(p(5)=5 \) |
| **11** C | Earth rotates \(\frac{2\pi}{24} \) radians/hr
\(\text{Arclength} = \left(\frac{2\pi}{24} \right) \cdot 4000 \approx 1047 \) mph |
| **12** C | \(C_6 \cdot 6! = 4656960 \) |
| **13** A | \(A=4, B=\frac{2\pi}{3}, C=\frac{16}{3}, D=2, E=6 \)
\[\frac{A+B+C+D-E}{E^2} = 0.20632 \approx 0.21 \] |
| **14** E | Volume of tetrahedron
\[\text{perimeters} \]
\[
\begin{align*}
\text{perimeters} & \approx 13 \\
(1,3,-1,1) & = 1 \\
(2,1,-1,1) & = 2 \\
(1,-4,-2,1) & = 2 \\
\end{align*}
\]
\[
\sqrt{(1-2)^2 + (2-3)^2 + (1+1)^2} = \sqrt{6}
\]
Similarly the other perimeters are \(1,3\sqrt{5},3,\sqrt{51},\sqrt{34} \)
\(AB \approx 13 \) |
| **15** B | Todd:
\[Todd = 1000\left(1 + \frac{15}{4}\right)^{40} \approx 4360.38 \]
\[Jen = 1000e^{15(10)} \approx 4481.69 \]
\[Jen - Todd = 121.31 \] |
16 C
\[100 = 200e^{30k} \Rightarrow \]
\[.5 = e^{30k} \Rightarrow k = \frac{\ln .5}{30}\]
So \(P(75) = 300e^{\frac{\ln .5}{30} \cdot 75} = 35.3553\)

17 D
1,1,2,3,4,8,13,21,34,55,89, take sum 232

18 C
\[70^\circ = \frac{70 \cdot \pi}{180} = \theta\]
\[\theta \cdot \text{radius} = \text{arc length}\]
\[\Rightarrow \frac{70\pi}{180} \cdot 5 \approx 6.1\]

19 D
Minor of 2
\[
\begin{bmatrix}
4 & 7 \\
-4 & 7 \\
2 & 0
\end{bmatrix}
\begin{bmatrix}
4 \\
7
\end{bmatrix} = 28
\]
(the Cofactor matrix would be the 3x3 matrix made up of the minors times \((-1)^n\)
\[
\begin{bmatrix}
-21 & 10 & 12 \\
-28 & -21 & 16 \\
45 & 8 & -11
\end{bmatrix}
\]
note that the sign of 28 has been changed due to its location.
The adjoint matrix is the TRANSPOSE of this matrix
\[
\begin{bmatrix}
-21 & -28 & 45 \\
10 & -21 & 8 \\
12 & 16 & -11
\end{bmatrix}
\]
The product is
\[
\begin{bmatrix}
19180 & 15960 & -27916 \\
15960 & 41468 & -44912 \\
-27916 & -44912 & 61880
\end{bmatrix}
\]
answer is -44912

20 B
If points are on circle they satisfy the circle equation.
\[(x + 1)^2 + (y - 5)^2 = r^2\]
\[(x - 7)^2 + (y - 1)^2 = r^2\]
subracting equation 1 and 2
\[(x + 1)^2 - (x - 5)^2 = 0\]
and implies \(x = 2\)
subracting equation 2 and 3 and subbing \(x = 2\)
\[9 + (y - 5)^2 - 25 - (y - 1)^2 = 0\]
which implies \(y = 1\)
thus equation is
subbing \(x = 2\) and \(y = 1\) into equation 1, \(3^2 + (-4)^2 = 25\) implies the radius is 5
equation
\[(x - 2)^2 + (y - 1) = 25\]

21 B
\[V = \pi (1.2r)^2 \cdot (9h) = 1.296\pi r^2h\]
\[\Rightarrow 29.6\% \text{ increase}\]

22 D
\[\cos a + \cos b = 2\cos\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right)\]
\[\Rightarrow a + b = 7, \quad a - b = 3\]
\[\Rightarrow a = 5, b = 2\]

23 D
\[y - 500 = \frac{1}{4c}(x - 500)^2\]
(1000,0) is on the parabola so
\[0 - 500 = \frac{1}{4c}(1000 - 500)^2\]
so \(4c = -500\)
\[y - 500 = -\frac{1}{500}(x - 500)^2\]
\[150 - 500 = -\frac{1}{500}(x - 500)^2\]
so \(x = 500 \pm 50\sqrt{70}\)
use the larger to indicate falling
<table>
<thead>
<tr>
<th></th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(x^2 + 2x - 4y^2 = 3)</td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow x^2 + 2x + 1 - 4y^2 = 4)</td>
</tr>
<tr>
<td></td>
<td>((x + 1)^2 - 4y^2 = 4)</td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow \frac{(x + 1)^2}{2^2} - \frac{y^2}{1^2} = 1)</td>
</tr>
<tr>
<td></td>
<td>asymptotes (y = \pm \frac{1}{2}(x + 1))</td>
</tr>
<tr>
<td></td>
<td>(\theta = \tan^{-1}\left(\frac{m_1 - m_2}{1 + m_1m_2}\right))</td>
</tr>
<tr>
<td></td>
<td>(= \tan^{-1}\left(\frac{4}{3}\right))</td>
</tr>
<tr>
<td></td>
<td>so (\cos\theta = \frac{3}{5})</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>P(-x) has 1 sign change → maximum of 1 negative root</td>
</tr>
<tr>
<td>26</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area of a circle-area of square</td>
</tr>
<tr>
<td></td>
<td>(\pi 2^2 - \left(2\sqrt{2}\right)^2 = 4\pi - 8)</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ok no –</td>
</tr>
<tr>
<td></td>
<td>5 0 25</td>
</tr>
<tr>
<td></td>
<td>6 4 20</td>
</tr>
<tr>
<td></td>
<td>7 8 15</td>
</tr>
<tr>
<td></td>
<td>8 12 10</td>
</tr>
<tr>
<td></td>
<td>9 16 5</td>
</tr>
<tr>
<td></td>
<td>10 20 0</td>
</tr>
<tr>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(A = \sqrt{5 + \sqrt{5 + \sqrt{5}...}} = \frac{1 + \sqrt{21}}{2})</td>
</tr>
<tr>
<td></td>
<td>(B = \sqrt{5 - \sqrt{5 - \sqrt{5}...}} = \frac{-1 + \sqrt{21}}{2})</td>
</tr>
<tr>
<td></td>
<td>A-B = 1</td>
</tr>
<tr>
<td>29</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>(\frac{20}{45} \binom{6}{2} + \frac{45}{45} \binom{6}{1} + \frac{10}{45} \binom{6}{0} = \frac{43975}{8145060})</td>
</tr>
</tbody>
</table>