For all questions, answer E. "NOTA" means none of the above answers is correct.

1) Find the area under $f(x) = \begin{cases} 4x - 3y = 8 & x \ge 5 \\ x - 2y = -3 & x < 5 \end{cases}$ on the interval [2,7].

A) 15 B) $\frac{175}{8}$ C) $\frac{245}{12}$ D) 18 E) NOTA

2) Find the area of the region bounded by the curves $f(x)=e^x$ and $g(x)=e^{-x}$ and the line y=0 on the interval $(-\infty,\infty)$.

A) 2e B) 1 C) e D) 2 E) NOTA

3) Find the area bounded by one of the leaves of the rose curve $r=5\cos(4\theta)$.

A)
$$\frac{25\pi}{8}$$
 B) $\frac{25\pi}{16}$ C) $\frac{5\pi}{2}$ D) $\frac{5\pi}{4}$ E) NOTA

4) What is the volume of the solid formed by the revolution about the x-axis of the region bounded by the curve $f(x) = \frac{1}{x}$, the x-axis, the line x=1, and the line x=e? A) $\frac{\pi(e-1)}{e}$ B) πe C) $e^{-1}+1$ D) $\frac{\pi}{e^2}+1$ E) NOTA

5) Find the volume of the solid figure that is formed by taking semi-circular cross sections perpendicular to the x-axis along the graph $f(x) = \sin(2x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.

A)
$$\frac{\pi^2}{16}$$
 B) $\frac{\pi^2}{32}$ C) $\frac{\pi^2}{4}$ D) $\frac{\pi^2}{8}$ E) NOTA

6) Use the trapezoidal rule with n=4 to approximate $\int_{0}^{4} x\sqrt{1+x^4} dx$ to the nearest thousandth. A) 64.980 B) 63.050 C) 64.992 D) 68.889 E) NOTA

7) Find the area of the region enclosed by the following three functions: $y = -x^2 + 4x + 5$, 9x + 2y = 36, and 7x + 4y = 39, on the interval where 9x + 2y = 36 > 7x + 4y = 39

A) $\frac{35}{12}$ B) $\frac{37}{24}$ C) $\frac{26}{9}$ D) $\frac{11}{4}$ E) NOTA

8) What is the volume of the torus formed when $x^2+y^2+10x-6y-2=0$ is revolved about the line x=4?

A) $2916\pi^2$ B) $216\pi^2$ C) $54\pi^2$ D) $324\pi^2$ E) NOTA

9) Find the area of the surface formed by the revolution of the graph $r = f(\theta) = 2\cos\theta$ about the line $\theta = \frac{\pi}{2}$.

A)
$$2\pi^2$$
 B) $\sqrt{2}\pi^2$ C) $4\pi^2$ D) 2π E) NOTA

10) Find the volume of the solid formed by revolving the region bounded by $f(x) = e^{2x+1}$, g(x) = 0, x = 0, and x = 3 about the line x=0.

A)
$$\frac{e\pi(e^6-1)}{2}$$
 B) $\frac{e\pi(5e^6+1)}{2}$ C) $\frac{(5e^7+e)}{4}$ D) $e\pi(e^6-1)$ E) NOTA

11) Which of the following is equal to the volume of the solid formed by revolving the region bounded by $y = \tan x$, y=0, and $x = \frac{\pi}{4}$ about the line y= π ?

A)
$$\pi \int_{0}^{\frac{\pi}{4}} (\pi - \tan x)^{2} dx + \frac{\pi^{3}}{8}$$

B) $\pi \int_{0}^{\frac{\pi}{4}} (\tan x)^{2} dx$
C) $-\pi \int_{0}^{\frac{\pi}{4}} (\pi - \tan x)^{2} dx + \frac{\pi^{4}}{4}$
D) $\int_{0}^{\frac{\pi}{4}} [\pi^{2} - (\pi - \tan x)^{2}] dx$
E) NOTA

12) Given that
$$\int_{a}^{-1} [x(x+5)]dx = \frac{77}{6}$$
, find a.
A) -5 B) -14 C) -10 D) -6 E) NOTA

13) Find the area bounded by f(x) = 2, $g(x) = x^{\frac{2}{7}}$, and x = 0.

A)
$$\frac{14(\sqrt[7]{4})}{9}$$
 B) $\frac{112\sqrt{2}}{9}$ C) $\frac{65\sqrt{2}}{9}$ D) $\frac{32\sqrt{2}}{9}$ E) NOTA

14) Use Simpson's Rule with n=6 to approximate $\int_{-\pi}^{\pi} x \sin x dx$ to two decimal places. A) 6.33 B) 6.28 C) 5.70 D) 5.48 E) NOTA

15) What is the expression for the surface area of revolution formed by revolving the graph $f(x) = \arctan x$ about the y-axis on the interval $0 \le x \le \frac{\pi}{4}$?

A)
$$\pi \int_{0}^{\frac{\pi}{4}} \arctan x \sqrt{\frac{1}{1+x^2}} dx$$
 B) $2\pi \int_{0}^{\frac{\pi}{4}} x \sqrt{\frac{x^4 + 2x^2 + 2}{x^4 + 2x^2 + 1}} dx$

C)
$$\pi \int_{0}^{\arctan\frac{\pi}{4}} \tan y \sqrt{\frac{\cos^4 y + 1}{\cos^4 y}} dy$$
 D) $2\pi \int_{0}^{\arctan\frac{\pi}{4}} y \sqrt{\frac{y^4 + 2y^2 + 2}{y^4 + 2y^2 + 1}} dy$ E) NOTA

16) Find the volume of the solid formed by revolving the graph of $y = \frac{1}{x^2 + 1}$ about the line x=1 on [1, 2].

A)
$$\frac{\ln 2}{2} - \frac{\pi}{4}$$
 B) $\pi \left(\frac{\pi}{8} - \frac{\arctan(1/2)}{2} - \frac{1}{20}\right)$
C) $\pi \ln(2)$ D) $2\pi \left(\frac{\ln(5/2)}{2} + \arctan\left(\frac{1}{2}\right) - \frac{\pi}{4}\right)$ E) NOTA

17) Find the volume of the solid formed by revolving the function $f(x) = -x^2 + 10x - 21$ about the x-axis on the interval where x>0, y>0, and f(x) is concave down.

A)
$$\frac{320\pi}{3}$$
 B) $\frac{5831\pi}{15}$ C) $\frac{32\pi}{3}$ D) $\frac{1024\pi}{15}$ E) NOTA

18) Find the surface area of the torus formed by revolving the graph $x^2 + y^2 - 8x + 12y + 27 = 0$ about the line 5x - 12y = -77.

A) $4225\pi^2$ B) $290\pi^2$ C) $260\pi^2$ D) $420\pi^2$ E) NOTA

19) What is the volume of the solid formed by taking equilateral triangle cross-sections parallel to the x-axis bounded the graph of the curve $x=6+y-y^2$ and the line x=0?

A)
$$\frac{125\sqrt{3}}{24}$$
 B) $\frac{625\pi}{6}$ C) $\frac{625\sqrt{3}}{24}$ D) $\frac{625}{24}$ E) NOTA

20) Find the general expression for the volume of a solid formed by revolving the graph of $f(x) = x^{\frac{a}{b}}$ where b > a > 0 about the line x=a+b on the interval $(0,\infty)$.

A)
$$2\pi \int_{0}^{a+b} x^{\frac{a}{b}} (a+b-x) dx$$
 B) $\pi \int_{0}^{a+b} x^{\frac{2a}{b}} dx$ C) $\int_{0}^{a+b} x^{\frac{a}{b}+1} dx$ D) $\int_{0}^{a+b} x^{\frac{a}{b}} (x-a-b) dx$ E) NOTA

21) What is the volume of the figure formed by revolving the region bounded by the functions $f(x) = x^2 - 1$ and g(x) = x + 1 about the line y=x+8?

A)
$$\frac{56169\pi}{400}$$
 B) $\frac{711\pi\sqrt{2}}{20}$ C) $\frac{2151\pi\sqrt{2}}{80}$ D) $\frac{514089\pi}{6400}$ E) NOTA

22) Find the volume of the solid formed by revolving the graph of $f(x) = \ln x$ about the line x=0 on the interval [1, *e*].

A)
$$2\pi$$
 B) $\frac{\pi(e^2 + 1)}{2}$ C) $\pi(e - 2)$ D) $\frac{\pi(e^2 + 1)}{4}$ E) NOTA

23) What is the approximate area using 4 right hand rectangles of $\int \tan x dx$ to three decimal places?

A) .616 B) .433 C) .610 D) .823 E) NOTA

24) Find the area inside the outer loop and outside the inner loop of the limaçon r=1-2 cos θ .

A)
$$\frac{3\sqrt{3} + 4\pi}{2}$$
 B) $2\sqrt{3} + \frac{4\pi}{3}$ C) $3\sqrt{3} + 4\pi$ D) $\frac{\pi - \sqrt{3}}{2}$ E) NOTA

25) What is the area bounded by the functions f(x) = |3x - 4| and g(x) = |x + 3|?

A) $\frac{129}{16}$ B) $\frac{169}{8}$ C) $\frac{169}{24}$ D) $\frac{169}{16}$ E) NOTA

26) What is the volume of the solid formed when the region bounded by $\phi(x) = \frac{1}{\sqrt{x}}$ and y=0 is rotated about the line x = -1 on the interval [1,4]?

A) $\frac{20\pi}{3}$ B) $\frac{80\pi}{3}$ C) $\frac{16\pi}{3}$ D) $\frac{28\pi}{3}$ E) NOTA

27) Find the volume of the solid formed by revolving the region bounded by $y = \sqrt{\arcsin x}$, and y=0 about the line y=0 on the interval [0,1].

A)
$$\frac{\pi^2}{4}$$
 B) $\frac{\pi}{2} - 1$ C) $\pi^2 - 2\pi$ D) $\frac{\pi(\pi - 2)}{2}$ E) NOTA

28) Find the volume of the solid formed by taking isosceles right triangle cross-sections perpendicular to the x-axis, with the hypotenuse of the cross-section triangles being in the xy-plane, along the graph of $y=4x^2$ on the interval [0,1].

A)
$$\frac{8}{5}$$
 B) $\frac{32}{5}$ C) $\frac{4}{5}$ D) $\frac{4\sqrt{3}}{5}$ E) NOTA

29) Find the volume of the solid formed when the region bounded by $y = \frac{1}{\sqrt{x^2 - 7x + 12}}$, y=0, x=0, and x=2 is revolved about the line y=0.

A)
$$2\pi \ln\left(\frac{27}{16}\right)$$
 B) $\pi \ln\left(\frac{3}{2}\right)$ C) $\frac{\pi}{2}\ln(3)$ D) $\frac{\pi}{2}\ln(16)$ E) NOTA

30) What is the area of the region bounded by $y=\sin x$ and $y=\cos x$ and x=0 for x>0?

A) $1 - \sqrt{2}$ B) 1 C) $\sqrt{2} - 1$ D) $\sqrt{3} + 1$ E) NOTA