2003 Mu Alpha Theta National Convention Calculus Applications Topic Test – Mu Division

Notes: All functions and numbers in this test take on real number values.

1. Find the derivative of f(x) = (x+1)(x+2)(x+3) at x = 1.

2. Evaluate: $\lim_{x \to 0} \frac{\sin(5x)}{3x}$ (A) 2 (B) $\frac{5}{3}$ (C) $\frac{4}{3}$ (D) 1 (E) NOTA

3. Find the average value of e^x as x increases from 1 to 3.

(A)
$$\frac{e^3 - e}{2}$$
 (B) e (C) $2e$ (D) e^3 (E) NOTA

4. Let
$$f(x) = 3x^2$$
. Evaluate: $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$
(A) 15 (B) 14 (C) 13 (D) 12 (E) NOTA

5. Which of the following statements are always true?

- (A) If f(x) is continuous everywhere, it is also differentiable everywhere.
- (B) If f(x) is differentiable at x = a, it is also continuous there.
- (C) There exists a differentiable function that's not continuous.
- (D) There does not exist a continuous function that's not differentiable.
- (E) NOTA
- 6. Let $g(x) = \sin x$. Find the 2003rd derivative of g with respect to x.

(A)
$$\cos x$$
 (B) $-\sin x$ (C) $-\cos x$ (D) $\sin x$ (E) NOTA

7. If x is a real number, find the maximum value of $\sin x + \cos x$.

(A)
$$\sqrt{2}$$
 (B) $\sqrt{3}$ (C) 2 (D) $\sqrt{5}$ (E) NOTA

8. Find y' if $y = x^3 \cos(4x)$.

(A)
$$3x^2\cos(4x) - 4x^3\sin(4x)$$
 (B) $12x^2\sin(4x)$

(C)
$$3x^2\sin(4x) - 4x^3\cos(4x)$$
 (D) $3x^2\cos(4x) + 4x^3\sin(4x)$ (E) NOTA

9. Find the derivative of $h(x) = \sin^6 x + \cos^6 x + 3 \sin x \cos x (\sin^2 x + \cos^2 x)$ at $x = \pi/4$.

(A)
$$\frac{\sqrt{2}}{2}$$
 (B) $\sqrt{3}$ (C) 0 (D) 1 (E) NOTA

10. Evaluate $\frac{dy}{dx}$ at (2003, 2003) if $x^3 + y^3 = axy$, where a is a constant not equal to 6009.

(A) 1 (B)
$$-1$$
 (C) 2 (D) -2 (E) NOTA

- 11. If $x(t) = (t^2 + 3t + 1)e^{2\ln t^2}$ describes the position of an antiparticle moving along the *x*-axis, find the acceleration of the antiparticle when t = 1.
 - (A) 5 (B) 25 (C) 61 (D) 102 (E) NOTA
- 12. If two resistors with resistances R_1 and R_2 (in ohms) are connected in parallel, then the total resistance R, measured in ohms, is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

If R_1 and R_2 are increasing at rates of 0.4 ohm per second and 0.5 ohm per second, respectively, how fast is R changing in ohms per second when $R_1 = 100$ ohms and $R_2 = 200$ ohms?

(A)
$$\frac{7}{30}$$
 (B) $\frac{11}{18}$ (C) $\frac{8}{45}$ (D) $\frac{4}{9}$ (E) NOTA

13. A ladder 15 feet long rests against a vertical wall perpendicular to the ground. If the bottom of the ladder slides away from the wall at a speed of 3 feet per second, how fast is the angle between the top of the ladder and the wall changing in feet per second at the moment the angle is $\pi/4$ radian?

(A)
$$\frac{\sqrt{2}}{5}$$
 (B) 2 (C) $\frac{\sqrt{3}}{5}$ (D) $\frac{2}{5}$ (E) NOTA

- 14. Let A(c) equal the area of the region bounded by the graph of $f(x) = x^4 + 2x^2 + 12$ and the x-axis from x = 0 to x = c, where $c \le 100$. What is the value of A'(5)?
 - (A) 680 (B) 685 (C) 687 (D) 690 (E) NOTA
- 15. A telescope is sold at a price of $\sum_{x=1}^{2003} \frac{1}{x(x+1)}$ dollars. How much does the telescope cost, in dollars?
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA

16. Let a_n be a sequence given by $a_1 = 10^{-2003}$ and $a_{n+1}(a_n+1) = a_n$ for $n \ge 1$. Which of the following is an upper bound for $\sum_{n=1}^{\infty} a_n$?

(A) 1 (B) $\frac{\pi}{2}$ (C) \sqrt{e} (D) $5 \ln 10$ (E) NOTA

17. Evaluate: $\lim_{x \to \pi/2} \frac{e^{\cos x} - 1}{x - \pi/2}$ (A) 0 (B) -1 (C) 1 (D) + ∞ (E) NOTA

18. Which of the following intervals does $f(x) = x^3 - 26x + 1$ have a root?

- (A) 0 < x < 5 (B) 6 < x < 11
- (C) 12 < x < 17 (D) 18 < x < 23 (E) NOTA

19. Find the area of largest rectangle that can be inscribed in the graph of $y = -4x^2 + 64$ (where $y \ge 0$) and the x-axis given that one side of the rectangle lies on the x-axis.

(A)
$$\frac{2^7}{\sqrt{3}}$$
 (B) $\frac{2^8}{3}$ (C) $\frac{2^9}{27}$ (D) $\frac{2^{10}\sqrt{3}}{9}$ (E) NOTA

20. What is the maximum area of triangle ABC, given that A = (0, 0), B = (0, 10), and C is a point on the curve given by $y = x^3 + 1$, where $|x| \le 20$?

- (A) 60 (B) 80 (C) 100 (D) 120 (E) NOTA
- 21. Suppose that y = f(x) is a function such that f'(x) = y, and f(5) = 3. Find, to the nearest hundredth, the value of f(6).

22. Find the volume of the solid obtained by rotating the region between the graphs of y = x and $y = x^3$ about the y-axis.

(A)
$$\frac{\pi}{15}$$
 (B) $\frac{2\pi}{15}$ (C) $\frac{4\pi}{15}$ (D) $\frac{8\pi}{15}$ (E) NOTA

23. Find the point where the curves $y = x^3 - 3x + 4$ and $y = 3(x^2 - x)$ are tangent to each other.

(A)
$$(2,6)$$
 (B) $(-1,9)$ (C) $(-1,6)$ (D) $(2,9)$ (E) NOTA

- 24. What is the volume of solid formed when the circle given by $(x 6)^2 + y^2 = 1$ is revolved around the *y*-axis?
 - (A) $10\pi^2$ (B) $12\pi^2$ (C) $14\pi^2$ (D) $36\pi^2$ (E) NOTA
- 25. What is the area of an ellipse with major axis 10 and minor axis 6?
 - (A) 15π (B) 30π (C) 60π (D) 120π (E) NOTA
- 26. Find the area in-between the graphs of $y = x^2$ and y = 10x.
 - (A) 125 (B) $\frac{500}{3}$ (C) 250 (D) 500 (E) NOTA

- 27. Solid A is 10 meters tall. The area of the cross sections of A parallel to the ground is given by $C(x) = 3x^2 + 3$, where x is the distance from the cross section to the ground in meters. What is the volume of A, in cubic meters?
- (A) 1000 (B) 1010 (C) 1020 (D) 1030 (E) NOTA 28. Evaluate: $\lim_{x \to \infty} \left(\frac{2^x - 1}{2}\right)^{1/x}$
 - (A) 1 (B) 2 (C) e (D) e^2 (E) NOTA
- 29. How many polynomials P(x) with integer coefficients exist such that P'(x) > 0 and $(P(x))^2 + 4 \le 4P(x^2)$ for all x?
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) NOTA
- 30. In the xy-plane, the points (0,0), (2,0), and $(0,\sqrt{3})$ are labelled A, B, and C in some order. Find the sum of the coordinates of the point P on the same plane inside triangle ABC such that the sum of the distances from P to each of A, B, and C is as small as possible.

(A)
$$\frac{5+3\sqrt{3}}{13}$$
 (B) $\frac{1}{2} + \sqrt{\frac{5}{3}}$ (C) $1 + \frac{\sqrt{3}}{2}$ (D) $\frac{\sqrt{7}-2}{6}$ (E) NOTA