ALPHA ANALYTIC GEOMETRY 2004 SOLUTIONS

	TIONS
1) A Applying the distance formula from a general point (x, y) to the two points mentioned: $\sqrt{(x-1)^2 + (y-2)^2} = \sqrt{(x-3)^2 + (y-7)^2}$	6) B Using the formula $\text{proj}_{v}\mathbf{u} = \left(\frac{\mathbf{u} \bullet \mathbf{v}}{\ \mathbf{v}\ ^{2}}\right)\mathbf{v}$, we get
$\sqrt{(x-1)^2 + (y-2)^2} = \sqrt{(x-3)^2 + (y-7)^2}$ Solving, we get $4x + 10y - 53 = 0$	$\text{proj}_{v} \mathbf{u} = \left(\frac{50}{100}\right) \langle 10, 0 \rangle = \langle 5, 0 \rangle$
2) B	7) A Setting $y = 0$ in the equation to solve for the
Conic section Eccentricity	roots we get $27x^3 = 1$ or $(3x)^3 = 1$, so $3x$ is a cube
Circle $e = 0$	root of 1 and has the form $3x = \frac{-1}{2} \pm \frac{\sqrt{3}}{2}i$
Ellipse $0 < e < 1$ Parabola $e = 1$	
$\begin{array}{c} 1 & a a a b b a \\ Hyperbola & e > 1 \end{array}$, and therefore $ x = \frac{1}{3} \left \frac{-1}{2} \pm \frac{\sqrt{3}}{2} i \right = \frac{1}{3}$
	3 2 2 3
3) B The three cube roots of 1 can be found by:	8) A This problem is describing a parabola with directrix at $y = 1/2$ and focus at (3,4). The vertex is
$z_1 = 1 \cdot cis(360/3) = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$	(1)
	at $\left(3, \frac{9}{4}\right)$ and $p = \frac{\left(4 - \frac{1}{2}\right)}{2} = \frac{7}{4}$. The parabola can
$z_2 = 1 \cdot cis(2 \cdot 360/3) = \frac{-1}{2} - \frac{\sqrt{3}}{2}i$, and $z_3 = 1$, which	
	now be written from the standard equation $($
is a triangle with base $\sqrt{3}$ and height $3/2$.	$(x-h)^{2} = 4p(y-k) \Longrightarrow (x-3)^{2} = 7\left(y-\frac{9}{4}\right)$
4) A Using Green's theorem, the area can be found	9) C The standard equation for a circle with center
by: $A = (x_1y_2 + x_2y_3 + \dots + x_{n-1}y_n + x_ny_1)$	(h,k) and radius, r, is : $(x-h)^2 + (y-k)^2 = r^2$.
$-y_1x_2 - y_2x_3 - \dots - y_{n-1}x_n - y_nx_1)$	
5) D The centroid is (x,y) , where x is the average of	10) A This volume can be found by summing the
the x-coordinates, and y is the average of the y-	volumes of the double-napped cone below and above
coordinates. So, $(x, y) = (-1/7, 13/7)$. The distance	the z-axis. Above the z-axis, the cone's base is at
from this point to the line $7x - 7y - 70 = 0$ can be	$x^2 + y^2 = 9^2 = 81$ (a cone with base area = 81π), and below the z axis, the cone's base is at
found by $D = \frac{\left 7 \cdot \frac{-1}{7} - 7 \cdot \frac{13}{7} - 70\right }{\sqrt{7^2 + 7^2}} = 6\sqrt{2}$. Applying	below the z-axis, the cone's base is at $x^2 + y^2 = (-6)^2 = 36$ (with base area = 36π). So the
found by $D = \frac{1}{\sqrt{7^2 + 7^2}} = 6\sqrt{2}$. Applying	sum of the volumes of the cones
the formula given, $V = 2\pi \frac{131}{2} \cdot 6\sqrt{2} = 786\pi\sqrt{2}$	$(V = \frac{bh}{3} = \frac{81\pi \cdot 9}{3} + \frac{36\pi \cdot 6}{3} = 315\pi$

11) B The three points of intersection can be found at $\theta = 0^{\circ},90^{\circ},270^{\circ}$. The point $(-3,180^{\circ})$ is coincident with the point $(3,0^{\circ})$ and should not be counted twice.	16) B The shortest distance from the center (-2,3) to the line $x - y = 7$ is found by $D = \frac{ 1 \cdot (-2) + (-1) \cdot 3 - 7 }{\sqrt{1^2 + (-1)^2}} = 6\sqrt{2} = r$. So our circle can be expressed as: $(x + 2)^2 + (y - 3)^2 = (6\sqrt{2})^2$, or $x^2 + y^2 + 4x - 6y - 59 = 0$.
12) C The figure described is an ellipse with major axis equal to 5 (when the dog stretches the rope to be exactly 4 units away from each stake, making an isosceles triangle with them). and minor axis equal to 4 (when the dog is on the same line as the stakes, one unit to the outside of them) The area of the ellipse (yard) that he covers is therefore $A = 20\pi$	17) D From the standard definition of a parabola.
13) C The equation can be factored as follows: $y = \frac{(\sin x + \cos x)^2}{(\sin x + \cos x)(\sin x - \cos x)}$, so we have discontinuities whenever $\sin x + \cos x = 0$ or $\sin x - \cos x = 0$, or whenever $x = n \pm \frac{\pi}{4}$.	18) E The equation for this line, going through the origin, is $\theta = \frac{2\pi}{3}$ or $\theta = \frac{-\pi}{3}$.
14) D Applying the distance formula to a general point, (x, y) , we get $\frac{ 4x - y }{\sqrt{4^2 + (-1)^2}} = 2 \cdot \frac{ -x + 4y }{\sqrt{4^2 + (-1)^2}}$, and solving, we get $ 4x - y = 2 4y - x $. This yields 4 equations, $6x = 9y, -2x = 7y, 2x = -7y, -6x = -9y$, which reduces to $y = \frac{2}{3}x$ and $y = \frac{-2}{7}x$.	19) B Any two diagonals of a cube have length $s\sqrt{3}$, where <i>s</i> is the length of the side. The triangles that are formed by the intersection of the diagonals all have sides $\frac{s\sqrt{3}}{2}, \frac{s\sqrt{3}}{2}, s$ or $\frac{s\sqrt{3}}{2}, \frac{s\sqrt{3}}{2}, s\sqrt{2}$. The first produces an inner angle of $2\sin^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 71$, and the second yields $2\sin^{-1}\left(\sqrt{\frac{2}{3}}\right) \approx 109$.
15) E Two of these vectors lie on the same line and therefore cannot form a rectangular prism.	20) C The two equations to be solved simultaneously are $(R^2 - r^2)\pi = 10\pi$ and $(R + r) = 5$. Substituting, we get $(R - r) \cdot 5\pi = 10\pi$, and the two equations yield R = 3.5, r = 1.5.

21) A The cosine can be found using the formula: $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\ \mathbf{u}\ \cdot \ \mathbf{v}\ } = \frac{-2 \cdot 1 + 3 \cdot 7}{\sqrt{(-2)^2 + 3^2} \cdot \sqrt{1^2 + 7^2}} = \frac{19\sqrt{26}}{130}$	26) D Given two points $\langle r_1, \theta_1 \rangle$ and $\langle r_2, \theta_2 \rangle$, the distance between them can be found by: $d = \sqrt{r_1^2 + r_x^2 - 2r_2r_1\cos(\theta_2 - \theta_1)}$. In our case: $d = \sqrt{2^2 + 5^2 - 2 \cdot 5 \cdot 2 \cdot \cos(215^\circ - 35^\circ)} = \sqrt{49} = 7$
22) B The two graphs intersect at the points (1,0) and $\left(\frac{1}{2}, \frac{-1}{2}\right)$, the line through which has a slope of 1.	27) A In general: $r = \frac{2ep}{1 \pm e \sin \theta}$ or $r = \frac{2ep}{1 \pm e \cos \theta}$, where $e =$ eccentricity. Since, for a parabola, $e = 1$, b), c), and d) fail. But a) can be rewritten $r \sin \theta = 6 \cot \theta$ and converting: $y = 6\left(\frac{x}{y}\right)$, or $y^2 = 6x$
23) C The equation can be rewritten as $(x+y-3)(2x-2y+5)=0$, which is graphed as a pair of lines.	28) C If $a =$ major axis and $b =$ minor axis, then $\frac{a}{b} = 3$ and $ab\pi = 48\pi$. Substituting, we get $a = 12$ and $b = 4$. The length of the latus rectum is $\frac{2b^2}{a} = \frac{2 \cdot 4^2}{12} = \frac{8}{3}$
24) C The graph $f(x)$ closely resembles the function $y = \ln(x)$. Therefore $f^{-1}(x) = e^x$ and $f^{-1}(-x) = e^{-x}$ which closely resembles the graph in c)	29) B The equation of the line through the two points is $y = 5x - 13$. Choosing $x = \frac{t}{5}$, we get $y = t - 13$.
25) A The radius of a circle given the side lengths of the inscribed triangle is found by: $r = \frac{ABC}{4 \cdot Area}$. The area of the isosceles triangle is found by $\frac{bh}{2}$, where $h = \sqrt{4^2 - 3^2} = \sqrt{7}$, and therefore $r = \frac{6 \cdot 4 \cdot 4}{4 \cdot (3 \cdot \sqrt{7})} = \frac{8}{\sqrt{7}}$.	30) B Plugging $a = 7$ and $b = 4$ into the equation given, we get $C \approx (11.2055)\pi$. A circle with the same circumference would have radius $r = \frac{C}{2\pi} \approx 5.6028$ and therefore have area $A = \pi r^2 \approx \pi (5.6028)^2 \approx 98.6$