The abbreviation NOTA denotes "None Of These Answers."

- 1. Which is NOT a solution of the inequality |1-2x| > 5
 - A. -3 B. 3 C. 10 D. 20 E. NOTA
- 2. Which statement about the equation $\frac{x}{2} \frac{y}{3} = 1$ is true?
 - A. The graph is a hyperbola.
 - B. The graph has a domain x < 0.
 - C. The y-intercept of the graph is -3.
 - D. The graph is a parabola.

E. NOTA

4.

3. If 4(5-10x)-2(x+3)=12 then 42x=

E. NOTA

A.1 B.2 C.3 D.4

Which inequality below has the solution closest to that shown?

- **A**. $y \le |x+1| 1$
- **B.** $y \le |x-1| 1$
- $C. \quad y \ge |x-1| 1$
- $\mathsf{D.} \quad y \ge |x+1| 1$
- E. NOTA

5. The equation $x(t) = -16t^2 + 64t + 40$ for $x(t) \ge 0$ gives the distance above ground, in feet, of an object thrown upward, at t seconds. What is the time when the object is highest above ground?

A. t=1 second	B. t=2 seconds
C. t=3 seconds	D. t=4 seconds
E. NOTA	

6. For $i = \sqrt{-1}$, $f(x) = \frac{x-i}{x+i}$. What is the value of f(1)? A. 1 B. 2 C. i D. -i E. NOTA

7. Which equation gives the graph of a parabola with latus rectum of length 10?

- A. $y-1=10(x+2)^2$ B. $y-1=-10(x+2)^2$ C. $10(y-1)^2 = (x+2)$ D. $(y-1)^2 = -10(x+2)$ E. NOTA
- 8. The equation $12 = 3^{x-1}$ has real solution k. Give the value of $3k^2$ to the nearest hundredth place.

A. 95.76	B. 46.04	
C. 31.92	D. 15.35	E. NOTA

9. Which is the solution set to the inequality $x^2 - 4x \ge 5$?

A.
$$[-5, 1]$$
B. $(-\infty, -1] \cup [5, \infty)$ C. $[-1, 5]$ D. $(-\infty, -5] \cup [1, \infty)$ E. NOTA

10. A squirrel climbs a tree with distance above ground (in feet) at time t seconds given by s(t) = 3t + 10 where s is positive. A cat climbs the tree with distance above ground (in feet) at time t seconds given by c(t) = 0.5t + 1. At what time will the cat be exactly 221.5 feet below the squirrel ?

A. 85 sec.	B. 87 sec.	
C. 92 sec.	D. 101 sec.	E. NOTA

- 11. The graph of $f(x) = (x-2)^2(x+3)(x-4)^3$ is tangent to the x-axis at x=
 - A. 2 B. 3 C. 4 D. -3 E. NOTA
- 12. If $\frac{x}{y} < \frac{7}{4}$ for integers x and y, then how many possible values of x exist?

A. 6 B. 5 C. 4 D. 0 E. NOTA

- 13. For all x < 2 the graph of f(x) has slope $-\frac{2}{3}$, and for all x > 2, the graph of f(x)has slope $\frac{2}{3}$. If the equation of the graph is f(x) = a |x-b| + c then give the value of b.
 - A. -6 B. -3 C. 2 D. 3 E. NOTA

14. If $x = \sqrt{40x - \sqrt{40x - \sqrt{40x - \sqrt{\dots}}}}$ for x a positive integer, then x =

Α.	42	B. 41	
<i>C</i> . ·	40	D. 39	E. NOTA

- 15. [x] is defined as the greatest integer value of x less than or equal to x. If $\left[-\pi\right] + \left|\sin\frac{\pi}{3}\right| = -k$ then k =C. 3 A. 5 B. 4 D. 2 E. NOTA 16. If $f(x) = x^2 \cdot (x+1)^3 \cdot (x+2)$ and f(k) = 37800 then k+1 =A. 4 B. 5 C 6 D.7 E. NOTA 17. A particle moves along the x-axis with distance from the origin given by $x(t) = |-16t^2 + 48t + 2|$ at *t* seconds, for $t \ge 0$. For the time interval [0, 4] seconds, what is the greatest distance that the particle is, from the origin? B. 34 A. 1.5 C. 38 D. 62 E. NOTA 18. If -2x < y < 2x for integers x and y and x + y = 5 then which is the smallest possible value of x?
 - A. 1 B. 2 C. 3 D. 4 E. NOTA
- 19. For positive integers t, y, w, z, it is true that t+5 < y and y > z and w < z-1. Which statement below <u>must</u> be true?
 - A. t > zB. z > tC. w < zD. y < zE. NOTA

		Equations and In	equalities - Alp	oha		
		FAMAT State (Convention 200	4		
20. For $0 < x < \frac{\pi}{2}$	$\frac{\sin x+1}{x+1}$	$-\frac{1}{$	24. If <i>a</i> +	b=5 and ab	=2 then	which is
2	$\sin x - 1$	$1-\sin x$	the val	ue of $a^3 + b^3$?	
Give the value A. $\frac{1}{8}$ B. $\frac{1}{2}$	e of $\frac{3x}{4\pi}$. $\frac{1}{4}$ C. $\frac{1}{2}$	D. 1 E. NOTA	A. 12 C. 98	5 B. 1 3 D. 9	17 95	Ε. ΝΟΤΑ
21. If $\frac{\frac{1}{x+1}}{\frac{1}{x+1}}$	$-=\frac{4}{7}$ then $-\frac{1}{2}$	$\frac{1}{x} =$	25. If <i>x, y</i> <i>x < y < z</i> be equal	and z are post z, then which to $(y^x)(y^z)$	sitive inter of the fo	gers such that llowing could
2 + x + 1			A. I D. 81	B. 8 E. NOTA	C. 64 A	
A. 3	B. 2					
C. 1	D. $\frac{1}{2}$	E) NOTA	26. The grap y = 10 - two par	the of $y = 5$, -x bound a quality of the second s	y = 1, y = uadrilatero tal sides.	2x+5 and al region with Find the area
22. Consider the	e equation $y =$	$\sum_{n=1}^{\infty} 3^x$. What is		quadinaren	A1.	
the least val	lue of k for wh	x=0 nich y > 9840 ?	A. 22 C. 32	B. 2 D. 3	:6 34	Ε. ΝΟΤΑ
A.6 C.8	B. 7 D. 9	E. NOTA	27. The area A > 10 si	a A of a tria n $ heta$, for $ heta$ ar	ngle is give angle of	en by the triangle
23. A man makes money in dollars at the end of day d , according to equation M(d) = 20 + M(d-1) for $d > 0$. $M(0)=0$. That is, at the end of day 6, he makes $M(6)$ dollars, for that day only (not a cumulative total). Tell how much money the man will make on day 30.		triangle has integral length sides, then which three numbers below could be the side lengths of the triangle?				
		A. 3, C. 2,	,4,5 B 4,4 D	3, 1, 1, 1), 3, 5, 5	E. NOTA	
A. \$580 C. \$620	B. \$600 D. \$640	E. NOTA				

- 28. The roots of $y = 2x^3 3x^2 + 4x + 8$ are r, s and t. What is the value of rs + st + rt?
 - A. $\frac{3}{2}$ B. 2 C. 3 D. 4 E. NOTA
- 29. Consider the base-five number $x=21_{five}$ and the base-six number $y=100_{six}$. Which is the value of K, for K = |x - y| if K is written in base ten?

A. 81	B. 36	
C. 25	D. 12	E. NOTA

- 30. A body cools after a murder, according to the equation $\ln(T-80) = kt + C$ where T is the degrees Fahrenheit of the body at t minutes. C and k are constants. If the body was found at 9:00 PM and was 96°F, and six minutes later the body was 94°F, then tell which person below **could not** have been the murderer. Assume normal body temperature of 98.6°F at the time of murder, and all times below are in the time intervals most recent to the murder. Also assume that any murder was done by one person, and no murder for hire occurred.
 - A. Colonel Mustard who has an alibi from 8:00 PM to 8:30 PM.
 - B. Dame Ruby who has an alibi from 8:31 PM to 8:40 PM.
 - C. General Germ who has an alibi from 8:41 PM to 8:50 PM.
 - D. Madame Mauve who has an alibi from 8:51 PM to 8:59 PM.
 - E. NOTA

Solutions:

1. Substitute or use 1-2x > 5 or -(1-2x) > 5which solves to x < -2 or x > 3. Choice B is not a solution. <u>B is the answer.</u>

2. <u>C</u>. The y-intercept is -3.

3. Solve to x=1/21, and so 42x = 2. Choice B.

4. <u>Choice B</u>: vertex at (1, -1), shaded under.

5. The highest point is at the vertex of the parabolic graph: $t = \frac{-b}{2a} = 2$. <u>Choice B</u>.

6. For
$$\frac{1-i}{1+i} = \left(\frac{1-i}{1+i}\right) \frac{(1-i)}{(1-i)} = \frac{-2i}{2} = -i$$

Choice D.

7. All equations shown have length of LR that is 1/10, except choice D. That choice is correct. <u>D</u>.

8. $\ln(12) = \ln(3)^{x-1}$ and $\ln 12 = (x-1)\ln 3$. $\frac{\ln 12}{\ln 3} = x-1$. Add 1 and approximate to get 3.2619. Square and then multiply by 3 to get approximately 31.92, <u>choice C</u>.

9. $x^2 - 4x - 5 = (x - 5)(x + 1)$ which gives roots x= 5, x= -1. So putting these numbers on the real number line and checking intervals when $x^2 - 4x - 5 \ge 0$ gives interval <u>choice B</u>.

10. (3t+10) - 221.5 = 0.5t+1 solves to t=85. Choice A.

11. The squared term will give the root at which the graph is tangent to the x-axis. <u>Choice A.</u>

12. x and y can be negative, and 7/4 could have been reduced. There are an infinite number of values. Choice E.

13. The vertex must be at x=2, when the slope changes. So b must be 2. <u>Choice C.</u>

14. $x = \sqrt{40x - x}$ so $x^2 = 40x - x$ and $x^2 = 39x$, and since x is not zero, we have x=39. <u>Choice D</u>.

15. [-3.14...] = -4 and $\left[\frac{\sqrt{3}}{2}\right] = 0$. The sum is -4

so k=4. <u>Choice B</u>.

16. $37800=2^3 \cdot 3^3 \cdot 5^2 \cdot 7$ Since the biggest factor is 7 then x+2 must be 7 and x=5. So we have $5^2 \cdot 6^3 \cdot 7$. <u>Choice C</u>.

17. Using the same technique as in #5 gives the vertex is at t=1.5 and it is at position 38. But at t=4, the particle is at - 62, so distance is 62. \underline{D}

18. -2x < 5 - x < 2x: -x < 5 < 3x. 3x must be positive. 3x=6, x=2. <u>Choice B</u>.

19. If you put the variables on the number line then the only clear fact is that y is greater than any of the other and z>w. <u>Choice C</u>.

20. Factor out a -1 from the first denominator: $\frac{-(\sin x + 1)}{1 - \sin x} + \frac{1}{1 - \sin x} = -1 \text{ gives}$ $\frac{-\sin x}{1 - \sin x} = -1; \quad \frac{\sin x}{1 - \sin x} = 1. \quad \sin x = 1 - \sin x. \quad 2\sin x = 1$ and $\sin x = 1/2$ to give $x = \frac{\pi}{6}$ and $\frac{\pi}{6} \cdot \frac{3}{4\pi} = \frac{1}{8}$. **Choice A**.

21. Mutliply the numerator and denom. of the

large fraction by 2(x+1):
$$\frac{\overline{x+1}}{\frac{1}{2} + \frac{1}{x+1}} = \frac{2}{(x+1)+2}$$

21. continued: So $\frac{2}{x+3} = \frac{4}{7}$ which solves to 0.5.

The reciprocal is therefore 2. Choice B.

22. The sum of a geometric series is $a_1\left(\frac{1-r^n}{1-r}\right)$

so $3^0 \left(\frac{1-3^n}{1-3} \right) > 9840$ gives $1-3^n < -19680$ and

 $3^{n}-1>19680$. Add one, take the ln of both sides, and solve for n to get n> 8.9999075. So the TERM is the 9th term, and k=8. <u>Choice C</u>.

23. M(0)=0, M(1)=20, M92)=40, etc and so M(x)=20x. And so M(30)=20(30)=600. Choice B.

24. Square the first equation to get $a^{2} + 2ab + b^{2} = 25; a^{2} + b^{2} = 25 - 4 = 21.$ $a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2}) = 5(21-2)=95.$ <u>Choice D</u>.

25. In each case: choice A has y=1 which gives no value for x. Choice B gives y=2 and then x must be 1 which gives z=2 which can't be true. Choice C gives y can be either 2 or 4 or 8. The only possibility is that x=1, y=2 and z=5. This may be true. Choice D gives y=3 or 9, and both are impossible when one tries to get x and z. The only possibility is **choice** <u>C</u>.

Getting the intersection points, we have a trapezoid with height 4 and bases 5 and 11. The area is therefore 32, choice C.

27. Using $Area = \frac{1}{2}(side)(side)(sin(included angle))$ we use for sides a and b and included angle theta: $\frac{1}{2}(ab)\sin\theta > 10\sin\theta$. Multiply by 2 and divide by a positive number, $\sin\theta$, and we get ab > 20. The only possibility, where the two largest sides multplies to greater than 20 is <u>choice D</u>.

28. For $ax^3 + bx^2 + cx + d$, the sum of the roots is -b/a. The sum taken two at a time (rs+st+rt) is c/a and the sum taken three at a time (rst) is -d/a. The answer is c/a which is 4/2 which is 2. **Choice B.**

29. 21 (base 5)=11 and 100 (base six)= 36. The difference is 25, choice C.

30. Let t=0 be 9:00. Substitute: ln(96-80)=0+Cto give the value of C is ln(16). Then when t=6, we get ln(94-80)=6k+ln(16) gives the value of k to be ln(14/16) divided by 6. When we use 98.6 and solve for t we get t= -6.766 minutes (approximately). Thus about 6.8 minutes before 9:00, the murder occurred. This is about 8:53-8:54 PM. Madame Mauve had an alibi and thus could not be the murderer. <u>Choice D</u>.