CALCULUS INDIVIDUAL FAMAT State Convention 2004

For all questions, E. NOTA means none of the above answers is correct.

1. Evaluate
$$\lim_{x\to 0} \frac{0.5\sin(2x) + x\sin x - e^x + 1}{96x\sin x}$$

- a. 0
- b. 1/100
- c. 1/200
- d. 1/192
- e. NOTA
- 2. Given that f is continuous on [2,5], f(2) = -1, f(4) = 2, and f(5) = -3, which of the following <u>must</u> be true?
- I. f(c) = 1 for some c in (2,5).
- II. f'(c) = 0 for some c in (2,5)
- III. f has at least two zeros in (2,5)
- a. I, II, and III
- b. I and II only
- c. II and III only
- d. I and III only
- e. NOTA
- 3. An object is dropped from a point 600 feet above the ground. Its position at time t seconds after it is dropped is given by $f(t) = 600 16t^2$. With what velocity in ft/sec does it strike the ground?
- a. $-80\sqrt{6}$
- b. $-40\sqrt{6}$
- c. $-20\sqrt{6}$
- d. -196
- e. NOTA

4. Evaluate
$$\lim_{x\to 5^+} \frac{\sqrt{7x-10}-5}{10x-50}$$

- a. 0
- b. 0.07
- c. 0.001
- d. 0.007
- e. NOTA
- 5. Find the abscissas of points on the graph of $y = x^3 + 2x^2 4x + 5$ at which the tangent line is parallel to 11x y = 4.
- a. $\left\{-2, \frac{2}{3}\right\}$
- b. $\left\{\frac{5}{3}, -3\right\}$
- c. $\left\{ \frac{5}{2}, -2 \right\}$
- d. ϕ
- e. NOTA
- 6. Given f and g are twice differentiable functions, f(2) = 3, f'(2) = -1, g(2) = 2, g'(2) = -2 and f(g(x)) = h(x) for all x. Find h''(2) if f''(2) = g''(2).
- a. 3f''(2)-4
- b. f''(2)
- c. 3f''(2)
- 4. 0
- e. NOTA
- 7. If $\frac{dy}{dx} = \sqrt{2x+1}$ find the average rate of change of y with respect to x on the interval [0,4].
- a. 13/6
- b. 26/3
- c. 52/9
- d. 6
- e. NOTA

- 8. Use differentials to approximate the increase in the number of cubic inches in the volume of a spherical balloon if the diameter changes from 4 inches to 4.02 inches. Give the answer to the nearest thousandth.
- a. 4.021
- b. 2.011
- c. 1.005
- d. 0.503
- e. NOTA
- 9. If $w = \frac{z^2 27}{27z}$ and $z = (x^2 + 2)^3$, find $\frac{dw}{dx}$ when x = 1.
- a. 56/27
- b. 7/3
- c. 8/3
- d. 65/27
- e. NOTA
- 10. Find $\frac{d^2y}{dx^2}$ at y = 3 if $\frac{dy}{dx} = \sqrt{2y^2 1}$.
- a. $\frac{\sqrt{17}}{34}$
- b. $\frac{6\sqrt{17}}{17}$
- c. 6
- d. 4
- e. NOTA
- 11. At the point (0,0) the graph of $f(x) = e^x + e^{-x} + 2\cos x 4$ has:
- a. a relative maximum
- b. a relative minimum
- c. an inflection point
- d. a discontinuity
- e. NOTA

- 12. Find the maximum value of y = cos(2x) + sin(2x).
- a. 1
- b. $2\sqrt{2}$
- c. $\sqrt{2}$
- d. $\frac{\sqrt{2}}{2}$
- e. NOTA
- 13. Let f be a function that is continuous on [a,b]. Which are necessarily true if f(a) > 0 and for all x in [a,b], f'(x) < 0 and f''(x) < 0.
- I. For all c and d in (a,b) such that a < c < d < b, f(d) < f(c) < f(a).
- II. There exists an x in (a,b) such that f'(x) > f'(b).
- III. f has at least one zero in (a,b).
- IV. For some w in (a,b),

$$f''(w) = \frac{f'(b) - f'(a)}{b - a}$$

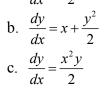
- a. all are true
- b. all except III are true
- c. I and II only are true
- d. I only is true
- e. NOTA
- 14. Evaluate

$$\lim_{n\to\infty} \left(\frac{\pi}{n} \left(\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \sin\frac{3\pi}{n} + \dots + \sin\frac{n\pi}{n} \right) \right)$$

- a. 2
- b. π
- $c. 1-\cos 1$
- d. 0
- e. NOTA

15. If
$$g(x) = \int_{3}^{x} \frac{t}{e^{t} + 1} dt$$
 evaluate $g''(0)$.

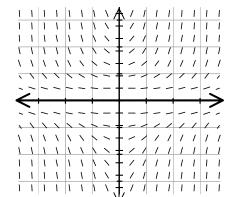
- a. 2
- b. 1
- c. 1/4
- d. 0
- e. NOTA
- 16. Which of the following is equivalent to $\int_{1}^{2} \frac{x}{e^{x^2}} dx ?$


- $c. \frac{1}{2} \int_{1}^{2} e^{-u} du$
- e. NOTA
- 17. Evaluate $\int |\sin x \cos x| dx$
- a. $\sqrt{2}$
- b. 2
- c. $2\sqrt{2}$
- e. NOTA
- 18. Suppose y = f(x) is a differentiable function such that f(2) = 0 and such that $3x^2 - x^2y^3 + 4y = 12$. Use this value of f(2) to determine a differential approximation for f(1.97).
- a. 0.09
- b. -0.09
- c. .97
- d. -1.06
- e. NOTA

19. The function $v(t) = \frac{\sin t}{\sqrt{t}}$ for t in the

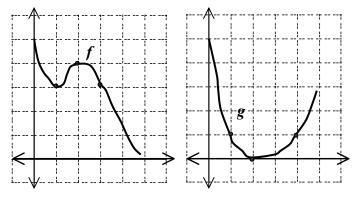
interval (0,4] describes the velocity of a particle moving on the x-axis. Which of the following is true at t = 3.5?

- a. acceleration is negative and speed is increasing
- b. acceleration is negative and speed is decreasing
- c. acceleration is positive and velocity is increasing
- d. acceleration is negative and velocity is increasing.
- e. NOTA
- 20. Choose the differential equation that could produce the given slopefield?



- 21. Which of the following is true regarding the graph of $y = 5x^4 + 3x^5$?
- a. It has two inflection points and two local extrema.
- b. It has one inflection point and two local
- c. It has two inflection points and one local
- d. It has one inflection point and one local
- e. NOTA

22. Evaluate


$$\int_{0}^{4} f(x)dx \text{ if } f(x) = \begin{cases} \sqrt{x+1} \text{ for } 0 \le x \le 3\\ 2x-4 \text{ for } 3 < x \le 4 \end{cases}$$

- a. 29/3
- b. 9
- c. 25/3
- d. 23/3
- e. NOTA

23. If the graph of $y = 3x^2 + 2x + k$ is tangent to the line 4x - y = 3, find k.

- a. 6
- b. −3
- c. -7/3
- d. -2/3
- e. NOTA

24. Graphs of f and g are shown. If h(x) = f(g(x)), which of the following statements could be true based on these graphs?

NOTE: Scales on all axes are 1. f has local extrema at x=1 and at x=2, g has a

local extremum at x=2.

- I. h(2) = 3
- II. h is increasing at x = 3
- III. h has a horizontal tangent line at x = 1.

IV. *h* is concave up at x = 4

- a. I and II only
- b. III and IV only
- c. II and IV only
- d. I and III only
- e. NOTA

25. Water is flowing into a conical reservoir with diameter 12 feet and height 8 feet. If water flows in at $6\pi \mathrm{ft}^3$ /min at what rate is the surface area increasing in ft^2 /min when the height of the water reaches 4 feet high from the vertex.

- a. 3π
- b. 4π
- c. 6π
- d. 8π
- e. NOTA

26. Evaluate
$$\int_{0}^{2} (xf'(x^{2}) + 1)dx$$
 if $f(0) = 2, f(2) = 4$, and $f(4) = 14$.

- a. 5
- b. 6
- c. 7
- d. 8
- e. NOTA

27. If
$$f(x) = \ln(2x+1)$$
, find $f(0) + f'(0) + f''(0)$.

- a. -1
- b. -2
- c. 6
- d. 2
- e. NOTA

28. If $f(x) = xe^{-kx}$ where k > 0, on what interval(s) is the graph of f concave down?

- a. $(0,\infty)$
- b. $\left(\frac{1}{k}, \infty\right)$
- c. $\left(-\infty, \frac{2}{k}\right)$
- d. $\left(0, \frac{2}{k}\right)$
- e. NOTA

29. If $f(x) = 2x^3 + 3x^2 - 12x + 7$, find the sum of the values of f'' at each distinct real zero of f.

- a. 0
- b. -18
- c. 36
- d. 48
- e. NOTA

30. Write an equation of a line tangent to the graph of f(g(x)) at x = -1 if

$$f(x) = 2x^3 + x^2 - x + 1$$
 and

$$g(x) = x^5 - 4x^3 + 2x - 3.$$

- a. 19x y = -10
- b. 95x 5y = -102
- c. 19x + 2y = -54
- d. 95x + y = -104
- e. NOTA