Sequences and Series—	-SOLUTIONS	State Convention 2004	
<i>1. C</i> — <i>If</i> $ r > 1$, <i>then it diverges (b/c its unbounded) and if</i> $ r < 1$ <i>then the limit = 0, hence converges. If</i>			
$r = 1$, converges to 0 and if $r = -1$, it diverges by oscillation. So $-1 < r \le 1$.			
2. $B - \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{2 \cdot 3}$	$\frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)}$. So, $S_n = 1 - \frac{1}{n(n+1)}$	$\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}.$ And,	
$\lim_{n\to\infty}S_n=1.$			
3. D—The limit of the ratio for the series $\sum \frac{1}{n^{3/2}}$ is 1, so this test fails.			
4. $D - S = \frac{a}{1 - r} = \frac{2/3}{1 - 2/3} = 2.$			
5. $C - \lim_{n \to \infty} (n+1)(x-3) = \infty$ (c)	liverges), unless x = 3.		
6. D—The series is $\cos \frac{\pi}{4} - (x - x)$ required term is $\frac{\sqrt{2}}{12}$.	$-\frac{\pi}{4}$) sin $\frac{\pi}{4}$ - $\frac{(x-\frac{\pi}{4})^2}{2!}$ cos $\frac{\pi}{4}$ + $\frac{(x-\frac{\pi}{4})^2}{2!}$ cos $\frac{\pi}{4}$ c	$\left(-\frac{\pi}{4}\right)^3 \sin \frac{\pi}{4} - \dots$ And the coefficient of the	
7. A—Using the series for e^x a	and letting x = -0.1 gives the ar	nswer.	
8. $Af(x) = x \ln x; f'(x) = 1 + 1$	$\frac{1}{\ln x; f''(x) = \frac{1}{x}; f'''(x) = \frac{-1}{x^2};}$	$f^{4}(x) = \frac{2}{x^{3}}; f^{5}(x) = \frac{-3 \cdot 2}{x^{4}} \text{ and } f^{5}(1) = -3 \cdot 2$	
So, the coefficient of $(x-1)^5 = -$	$\frac{-3\cdot 2}{5!} = \frac{-1}{20}.$		
9. C—Using the Ratio Test, we	e get $\lim_{n \to \infty} \left \frac{x}{2} \left(1 + \frac{1}{n} \right)^n \right = \left \frac{x}{2} \cdot e \right $. So	<i>b, the series converges when</i> $\left \frac{x}{2} \cdot e\right < 1$ <i>, that is,</i>	
when $ x < \frac{2}{e}$. So, the radius of convergence is $\frac{2}{e}$.			
<i>10. D—Since the ratio r < 1, th</i>	the sum of the series = $\frac{a}{1-r}$ or $\frac{a}{r}$	$\frac{\pi^3}{3^{\pi}} \cdot \frac{1}{1 - \frac{\pi^3}{3^{\pi}}}$, which simplifies to get the answer.	
11. A—The error of this given series is less in absolute value than the first term dropped, that is, less than			
$\left \frac{(-1)^{300}}{900-1}\right \approx 0.0011$. The closest	answer to this is A.		
12. E—Using the Ratio Test, w	The get $\lim_{n\to\infty}\frac{1}{n+1} x-1 $. This equation $\lim_{n\to\infty}\frac{1}{n+1} x-1 $.	uals 0 if $x \neq 1 \Rightarrow$ convergent everywhere. It	
also converges if x = 1.			
<i>13. C</i> — <i>The power series for</i> In	$u(1-x)$, if $x < 1$, is $-x - \frac{x^2}{2} - \frac{x^3}{3}$	and the coefficient of the x^3 term is $\frac{-1}{3}$.	
14. A—Rewrite the given limit	<i>it as:</i> $\lim_{n \to \infty} \left[\left(\frac{1}{n} \right)^{1/2} + \left(\frac{2}{n} \right)^{1/2} + \left(\frac{3}{n} \right)^{1/2} \right]$	$\int_{n}^{1/2} + \dots + \left(\frac{n}{n}\right)^{1/2} \left[\frac{1}{n}\right] \cdot \text{ Note that the interval in}$	
this case is 0 to 1 and $\Delta x = \frac{1}{n}$,	$x_k = \frac{k}{n}$, and $f(x_k) = (x_k)^{1/2}$. The function $f(x_k) = (x_k)^{1/2}$.	his gives the integral.	

15. B—Differentiating, the new series is $1 + \frac{x-1}{2} + \frac{(x-1)^2}{3} + \frac{(x-1)^2}{4} + \dots$ Using Ratio Test gives the answer.		
16. B—The limit approaches 0 as n gets large (denominator gets huge).		
17. D—Using the p-Series test, where p > 1,as in D, will show convergence.		
18. B—Using the Integral test for B, shows divergence.		
<i>19. D—Using the Limit Comparison Test shows convergence for this series/</i>		
20. A—Since the given series is a convergent geometric series with $a = 2$ and $r = 0.2$, we have		
$R_3 = \frac{ar^3}{1-r} = \frac{2(1/5)^3}{1-1/5} = 0.02$		
21. D—We want $\frac{2(1/5)^n}{1-1/5} < 0.0002$. Solving, we get $n > 5.86$. so 6 terms are required for stated accuracy.		
22. <i>D</i> — <i>Rationalizing the denominators, we have</i> $(\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + + (\sqrt{25} - \sqrt{24}) = 4.$		
23. C—Subtract 2 from the beginning index of summation means add 2 to the formula that is summed.		
24. B—We have $(t_{10} + t_2 + + t_{n-1}) + t_n = n^2 t_n \Rightarrow (n-1)^2 t_{n-1} = (n^2 - 1)t_n \Rightarrow t_n = \frac{n-1}{n+1}t_{n-1}$. So the sum is		
$50^2 \cdot \frac{1}{50 \cdot 51} = \frac{33}{51}$.		
25. B—Write the series as $1+3x+5x^2+7x^3+$ which then can be written as $[1+x+x^2+x^3+]+[2(x+x^2+x^3+)]+[2(x^2+x^3+)]+=\left[\frac{1}{1-x}\right]+\left[\frac{2x}{1-x}\right]+\left[\frac{2x^2}{1-x}\right]+=\frac{1+x}{(1-x)^2}$		
Letting $x = \frac{1}{3}$ gives the answer 3.		
<i>26. B</i> — <i>Plugging in, one can readily see that everything cancels but</i> $2(n+1)-1 = 2n+1$.		
27. B—Let $S = \frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3} + \dots$ and $\frac{1}{5}S = \frac{1}{5^2} + \frac{2}{5^3} + \frac{3}{5^4} + \dots$ Subtracting these quantities gives		
$\frac{4}{5}S = \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots \text{ or (using the infinite geom. sum formula), } \frac{4}{5}S = \frac{1/5}{1 - 1/5} \Longrightarrow S = \frac{5}{16}.$		
28. C—Rewrite the series as $1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} + \dots = 1 - \frac{1}{201} = \frac{200}{201}$.		
<i>29. D</i> — <i>Using the geometric sum formula, we get</i> $S = (1 + i)^{22} - 1$ <i>and</i> $(1 + i)^{2} = 2i$, <i>so</i>		
$(1+i)^{22} = (2i)^{11} \Longrightarrow S = -1 - i \cdot 2^{11} = -1 - 2048i$		

30. D—*Using the formula given, when* n = 1, $x_2 = 3$ *and when* n = 2, $x_3 = 5$.