1. A
54: Since this number is positive the 2’s complement is simply the binary representation of 54. This can be calculated using the following procedure:
 a) Let num = 54
 b) Record (num mod 2)
 c) num = integer part(num / 2)
 d) Goto step b until num = 0

The digits you record in step b will be the digits of the binary representation.

-24: Repeat the same procedure with +24. Invert each bit and then simply add 1 to the result to make it a negative 2’s complement number. You will notice that if you add the 2’s complement value representing 24 with the one representing -24 the result will be exactly zero.

2. B
Ward Christensen and Randy Suess brought the first bulletin board system (BBS) online on February 16, 1978 in Chicago. It was called the Computerized Bulletin Board System (CBBS).

3. C
While the first attempt at developing the UNIX operating system was multi-organizational and it is now a registered trademark of The Open Group, Bell Laboratories eventually made it a success.

4. B
In 1952 A.S. Douglas wrote his thesis on the Human-Computer interaction, and illustrated it with a graphic Tic-Tac-Toe game displayed on a cathode ray tube. This is the earliest graphical computer game known to exist. The game was played against the machine, which used special algorithms to win whenever possible.

5. C
There are 1024 megabytes in 1 gigabyte, 1024 kilobytes in 1 megabyte, 1024 bytes in 1 kilobyte, and 8 bits in 1 byte. So, there are 1024*1024*1024*8 bits in a gigabyte.

6. D
The first important factor to note is that value will be incremented by a random integer between 1 and 10 a total of 5 times. This is because count will be incremented n/5=20 times for each of the outer loops. So, in order to find the probability I determined all of the sequences of 5 integers between 1 and 10 that add to less than 10. There are 11 in total and they are as follows:
Each of these sequences has a specific number of unique arrangements. They are listed as follows in the corresponding order of the above sequences:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since each of the integers is generated independently, the probability of any specific sequence of 5 integers between 1 and 10 is \((1/10)^5\). The total number of possible sequences of integers between 1 and 10 that yield a sum of less than 10 is 121. Thus the total probability of observing any of the arrangements of any of the sequences is \(121 \times (1/10)^5\).

7. A
 Since `count` is incremented in the inner loop, the outer loop will only run \(n\) times and thus the function will run in \(O(n)\) time.

8. E
 The expression is equivalent to \(\sim A \land \sim B \land (A \lor \sim B) \land A\).

9. B
 This time `count` is not incremented in the inner loop. The inner loop will run \(n/5\) times for each iteration of the outer loop. The outer loop will run \(n\) times. Thus the function will run in a total of \(O(n^2/5) = O(n^2)\) time.

10. D
 Processors do operations on internal memory structures called registers. Cache is also a memory structure located internally on a processor, but it is used to store frequently used main memory data in a location that has faster access times.