Discrete Mathematics States 2004 Solutions

1. Using logical deduction, the order is Noah, John,	20. Use expected value. $0.5(-1)+(1/3)*2 =$
Graham C	0.17 C
2. The only times when F is true is when $(\overline{A} \cdot B \cdot C)$ or	21. The adjacency matrix shows possible
$(A \cdot B \cdot C)$ are true, so using sum of products the answer	paths from one vertex to another. The correct
$= E - \left(\overline{A} - B - C \right) + \left(A - B - C \right) \mathbf{A}$	matrix is in C.
$\mathbf{IS} \ F = (A \cdot D \cdot C) + (A \cdot D \cdot C) \mathbf{A}$	22. The adjacency matrix shows possible
3. The negation of $(p AND q)$ is $(NOT p OK NOT q)$.	paths from one vertex to another. The correct
1 ne answer is B . 4. The converse of $(n \text{ implies } n)$ is $(a \text{ implies } n)$. The	matrix is in C.
4. The converse of (p implies q) is (q implies p). The answer is \mathbf{P}	23. An Euler circuit occurs when every
5 Use DeMorgan's law twice and then the distributive	24 A preorder traversal goes in the
nronerty D	following order:
6 The function $f(n) = 2n - 1$ does the desired	1) Visit root
mapping \mathbf{D}	2) Visit left subtree
7 i jij and iv are countable C	3) Visit right subtree
8 This algorithm has linear complexity since each	The answer is \mathbf{A} .
element must be tested exactly once B	25. Only i and ii are true. E
9 $7007 = 7^2 * 11 * 13$ E	26. a_n gives the n th Fibonaccci number, so a_8
10. m divides the difference between a and b. A	is 21 B
11. 6 and 28 are perfect. A	27. C(52,5)*C(47,5)*C(42,5)*C(37,5) =
12.3 = 0011, 7 = 0111, F = 1111. So $37F =$	52!
0011 0111 1111 D	$\frac{1}{(5!)^4 32!}$ C
	28 Using a binomial distribution with
$13 \begin{vmatrix} 1 & 2 & 3 \\ 13 \end{vmatrix} + \begin{vmatrix} 2 & 5 \\ 2 & 5 \end{vmatrix} - \begin{vmatrix} 14 & 32 \\ 14 & 32 \end{vmatrix} C$	2000000000000000000000000000000000000
$\begin{vmatrix} 15. \\ 4 & 5 & 6 \end{vmatrix} \begin{vmatrix} 2 & 5 \\ 2 & c \end{vmatrix} = \begin{vmatrix} 32 & 77 \end{vmatrix} \in C$	$p = \frac{2}{3}$, the P(4 Heads out of 7 Thats) = 0.26
	D
$\begin{bmatrix} 7 & -8 & 5 & 1 & 0 & 0 \end{bmatrix}$	29. All statements are true C
14 Row reduce $\begin{vmatrix} -4 & 5 & -3 & 0 & 1 & 0 \end{vmatrix}$	30. The LCM is $2^4 3^3 7^2$ B
to get $A^{-1} = \begin{vmatrix} 1 & 2 & 1 \end{vmatrix} A$	
$\begin{vmatrix} -1 & -1 & 3 \end{vmatrix}$	
[
13. $\Psi(n) = 11 \Psi(n) = 71 = 3040 \text{ E}$	
16. Using the pigeonhole principle, $\left \frac{100}{100}\right = 9$ B	
17.9nCr3 * 11nCr4 = 27,720 B	
18. Using the definition of combinations, the	
expression simplifies to $\binom{n+1}{2}$ B	
k	
19.	
P(0 in 1st position and 2 consecutive zeros) $5/16$ 5	
$\frac{P(0 \text{ in 1st position})}{P(0 \text{ in 1st position})} = \frac{1}{1/2} = \frac{1}{8}$	
D	
D	