Theta Topic Test – Functions - Solutions FAMAT State Convention 2004

For all questions, answer "E) NOTA" means none of the above answers is correct. The figures in this test are not drawn to scale.

- 1. C. Find that $f(x) = 2x^2 + 7x 5$ and evaluate f(5) f(3) = 80-34 = 46.
- 2. B. Multiply equation 1 by (2) and add to equation 3. Solve equation for y and substitute back in to find that x = 69, y = -125, z = -49. Thus x + y + z = -105
- 3. D. Use the combination of factors method: $\frac{\pm 1,2,4,5,10,20}{\pm 1,2,3,4,6,12}$. The only one that is not a possible factor is D, 7.

4. D.
$$\frac{f(m+3) - f(m)}{m+3 - m} = \frac{(m+3)^2 - (m+3) + 2 - (m^2 - m + 2)}{3} = 2m + 2$$

- 5. C. The maximum height of the ball is achieved at $x = \frac{-b}{2a} = \frac{-16}{-6} = \frac{8}{3}$. Thus the maximum height achieved by the ball will be at $-3(8/.)^2 + 16(8/3) + 6 = 82/3$.
- 6. A. Find the slope of the linear function as $\frac{5-7}{-2-2} = -0.5$. Thus y-7=(-0.5)(x-2). Q(x)=0 implies y = 0.

Thus -7=(-0.5)(x-2), solve to find x = -12.

- 7. D. $h(1.1) + h(\pi) h(-2.1) + h(0) = (1) + 3 (-3) + 0 = 7$.
- 8. A. The critical values of f(x) are $\sqrt{11} 1$ and $-\sqrt{11} 1$. Since 0 lies between them, plug zero into the equation and test, $f(0) = \langle 5 \rangle$. Thus the outer interval is correct. Thus A.

9. B.
$$x = \frac{5}{2-3y} \rightarrow 2-3y = \frac{5}{x} \rightarrow -3y = \frac{5}{x} - 2 \rightarrow y = \frac{5}{x} - \frac{2}{-3}$$
 Thus $\frac{2x-5}{3x}$

- 10. C. The shifts given require that the domain shift to the right 3, to [3,4] and the range shift up to [3,9].
- 11. B. The temperature change is spread over 6 hours, thus if it is linear, $\frac{25.7}{6} = 4.2833$ degrees must change

every hour. Since 3pm is 5 hours into the interval, the temperature is 5(4.28333) = 21.4166

- 12. B. If the shuttle can enter the atmosphere between 19 and 24,000 meters per second, then S(t) must be equal to 19000 and 24000 at those times. Thus $19000 = e^{6t} 1$ and $24000 = e^{6t} 1$. Solving yields *t*'s of 1.680975 and 1.6420411 minutes. Converted to seconds, this yields a window of 2.33 seconds.
- 13. C. Solve to find that x < 6.4375. Thus 0,1,2,3,4,5,6 are solutions, for a total of 7.
- 14. B. Since $ln(e^m) = m$ and $e^{ln(m)} = m$ (*e* and *ln* cancel each other out) the equation reduces to x + 13 = 5x 1.
- 15. B. f(x) = (x-3)(x+7). This becomes $x^2 + 4x 21$. Thus k = -21.
- 16. C. Factor the equation x(x+7)(x-3)(x+2)(x-1) = 0. Thus the roots are -7 + 3 + -2 + 1 + 0 = -5.
- 17. A. Solve for the true minimum to be $\frac{10}{9} = 1.25$ Thus the closest integer is 1. f(1) = 4 10 + 3 = -3.
- 18. A. v(-1) = 2(-1)(-1) = 2. $w(2) = 2^{-2} = 0.25$. u(0.25) = 0.5 1 = -0.5. 19. A. The equation expands to $8a^6 36a^4b^4 + 54a^2b^8 27b^{12}$ so 8 36 + 54 27 = -1
- 20. A. The function factors to $\frac{(x+3)(x-5)(x-1)}{(x+1)(x-3)(x+5)}$ so the vertical asymptotes were at (-1), (3), (-5) with a

horizontal asymptote of 1. Thus 1, 3.

- 21. C. The max height occurs at $\frac{-15}{-\frac{2}{3}}$ 22.5 seconds.
- 22. B. The function lying quadrant four means the inverse reflects over the y = x to quadrant 2.
- 23. D. xy = -16 and x+y = -6. Solve to find $\frac{1}{x} + \frac{1}{y} = \frac{3}{8}$
- 24. C. Observing a pattern, it reduces to $4.5 = \sqrt{x + 2 + 4.5}$. Thus solve for x = 13.75
- 25. C. The recursion formula yields $p_{1999} = 90$, $p_{2000} = 100$, $p_{2001} = 123$, $p_{2002} = 143.8$, $p_{2003} = 172.38$, $p_{2004} = 204.09$.
- 26. C. Start with Ac= πr^2 . The diameter serves as the diagonal of the square, $2\sqrt{\frac{A_c}{\pi}} = d$. Then use 45-45-90

triangle rules to find that the side length of the square is $2\sqrt{\frac{A_c}{\pi}}/\sqrt{2} = s$ Thus after reducing, the function

becomes $A_s = \frac{2A_c}{\pi}$

- 27. C. R^{-1} is a function since when the coordinates are switched (e.g. $x, y \rightarrow y, x$) none of the input values are mapped to different output values.
- 28. D. Plug in 3 into the M function and get $M(3) = 3^6 + 2(3^5) k(9) + 2 k(3)$. Solve to find k = 5. Then plug k into $x^6 + 2x^5 5x^2 + 2 5x$. Plug in (-1) to get f(-1) = 1.
- 29. C. $H(x) = x^{32^{0.25}} = x^8$. For all real inputs the function can take on values of zero to infinity. 30. D. For x > 0, H(x) becomes $3x^2 16x + 4$, for x < 0 it becomes $-3x^2 + 16x 4$. The maximum value over that interval occurs at 0, and thus x = 5.