1) Solve for \(a\):
\[
\log_7(\!a - 4\!) = 2
\]
A) 18 B) 49 C) 53 D) 104 E) NOTA

2) Solve for \(b\):
\[
2 \cdot 4^{b-2} = 32
\]
A) 2 B) 4 C) 8 D) 16 E) NOTA

3) What is the unit’s digit of \(2^{2004} + 3^{2004} - 5^{2004}\)?
A) 0 B) 2 C) 5 D) 8 E) NOTA

4) Which of the following is the same representation of the function \(h(x) = 16^{\sqrt{x}},\ x > 0\)?
I. \(h(x) = 4^x\) II. \(h(x) = 8 \cdot 2^{\sqrt{x}}\) III. \(h(x) = 8^{\sqrt{x}}\) IV. \(h(x) = 4^{2\sqrt{x}}\)
A) IV. only B) I. & IV. only C) II. & III. only D) All of these E) NOTA

5) Find the sum of all values of \(a\) that satisfy the given equation:
\[
\begin{align*}
\log_{10} \left(\frac{a}{a-1} \right) = \frac{1}{2} &= \log_{10} a - \log_{10} \left(\frac{1}{2} \right),\ a > 0
\end{align*}
\]
A) 0 B) 1 C) 2 D) No solution E) NOTA

6) Given: \(9^x - 2 \cdot 3^{x+1} - 7 = 0\)
The solution for \(x\) to the equation above can be represented as a decimal. What is the hundredths digit of the decimal representation?
A) 0 B) 1 C) 6 D) 7 E) NOTA

7) Evaluate:
\[
\sqrt{182} + \sqrt{182} + \sqrt{182} + \cdots
\]
A) 13 B) \(\sqrt{182}\) C) 14 D) \(\infty\) E) NOTA
8) The number of bacteria in a certain sample is monitored by a scientist. He notes that after one week there are 6531 bacteria and after two weeks there are 8634. If the amount of bacteria present follows a logarithmic pattern \(y = a + b \ln x \) where \(y \) is the amount of bacteria after \(x \) weeks, how many whole bacteria are in the sample after three weeks?

A) 9864
B) 10351
C) 10734
D) 13769
E) NOTA

9) Evaluate: \(\sum_{n=1}^{4} \log_2 n \)

A) 0
B) 1
C) 2
D) \(\log_2 10 \)
E) NOTA

10) If \(a = \log_{10} x \), \(b = \log_{10} y \), and \(c = \log_{10} z \), where \(x, y, \) and \(z \) are all greater than 0, then which of the following is equal to \(2a - b + \frac{3c}{2} \)?

A) \(\log_{10} \left(\frac{3 \cdot x \cdot z}{y} \right) \)
B) \(2 \log_{10} \left(\frac{x \cdot \sqrt[3]{z^3}}{\sqrt{y^2}} \right) \)
C) \(\log_{10} \left(\frac{x^2 \cdot \sqrt[3]{y^2}}{z} \right) \)
D) \(3 \log_{10} \left(\frac{x \cdot z}{y} \right) \)
E) NOTA

11) Simplify: \(2^{\log_4 2^{100}} \)

A) \(2^{25} \)
B) \(2^{50} \)
C) \(2^{100} \)
D) \(2^{200} \)
E) NOTA

12) Given: \(\log_{10} A = \frac{5}{2} \), \(\log_{10} B = \frac{9}{2} \), \(\log_{10} C = \frac{-3}{2} \)

What is the value of \(\log_{10} \left(\frac{A \cdot B^2}{C^3} \right) \)?

A) \(-15\)
B) \(7\)
C) \(15\)
D) \(16\)
E) NOTA

13) The graphs of \(y = x^2 \) and \(y = 2^x \) intersect in how many places?

A) 0
B) 1
C) 2
D) 3
E) NOTA

14) Which of the following function(s) has or have inverses that are functions for a domain of all real numbers?

I. \(y = x^2 - 1 \)
II. \(2y = x + 3 \)
III. \(y = x^3 - 6 \)
IV. \(y = x^3 - 6x \)

A) II. only
B) I. & IV. only
C) II. & III. only
D) All of these
E) NOTA
15) Simplify the given expression in terms of \(x \):
\[
\left(-1024 \cdot \frac{1}{x^2}\right)^{3/5}, \ x \neq 0
\]
A) \(\frac{1}{16x^{3/5}} \)
B) \(\frac{1}{32x^2} \)
C) \(-\frac{1}{4x^{-3/5}} \)
D) Undefined
E) NOTA

16) Given: \(f(x) = \log_2(x! + 8), x \in \mathbb{N} \)
Find: \(f^{-1}(5) \)
A) 4
B) 5
C) 7
D) Cannot be determined
E) NOTA

17) The BANK OF WYOMING compounds its money continuously according to the formula: \(y = Pe^{rt} \). Ms. Fish decides to put $1,525.00 in this bank and after 1 year, she discovers that she now has $1,642.13. How long will it take for her money to double in value? (Round your answer to the nearest tenth of a year)
A) 1.9
B) 6.7
C) 9.4
D) 13.2
E) NOTA

18) The number \(q \) written in scientific notation is given by: \(q = 6.63 \times 10^3 \).
In this form let \(A \) be the characteristic of \(q \) and \(B \) be the mantissa of \(q \). Using this information, solve for \(x \) in the given equation: (Round your answer to the nearest hundredth)
\[
4^{(4x)} = 3^{(Bx+1)}
\]
A) \(-0.35\)
B) \(0.19\)
C) \(2.41\)
D) \(2.82\)
E) NOTA

19) What is the coefficient of the \(a^{12}b^{12} \) term of the given expansion?
\[
\left(\frac{2}{3} a^3 + \frac{1}{2} b^2\right)^{10}
\]
A) \(\frac{1}{324}\)
B) \(\frac{5}{18}\)
C) \(\frac{35}{54}\)
D) \(\frac{28}{27}\)
E) NOTA

20) What is the domain of \(y = \log_4(x^2 - 2) \)?
A) \(x \in \mathbb{R} \)
B) \(x > 0 \)
C) \(x < -2 \) or \(x > 2 \)
D) \(x \leq -\sqrt{2} \) or \(x \geq \sqrt{2} \)
E) NOTA
21) Find an expression in terms of \(n \) for: \(\prod_{x=3}^{n} \log_{x} (x+1) \quad n \in N \)

A) \(\log_{n} (n+1) \)
B) \(\log_{3} n \)
C) \(\log_{3} (n+1) \)
D) \(\log_{n} 4 \)
E) NOTA

22) Using the fact that \(i = \sqrt{-1} \), simplify the given expression:
\[
\left[(\frac{1}{i^3})^5 + (-i)^{-1} \right]^4
\]

A) \(-4\)
B) \(0\)
C) \(1\)
D) \(16\)
E) NOTA

23) Given: \(\log_{x^2} y = \frac{1}{9} \quad x > 0, y > 0 \)
Find: \(\log_{\sqrt[3]{x}} x^3 \)

A) \(9\)
B) \(\frac{27}{2}\)
C) \(18\)
D) \(27\)
E) NOTA

24) Given: \(50^a 125^b 8^c = 1000 \)
Find: \(a + b + c \)

A) \(2\)
B) \(3\)
C) \(4\)
D) \(6\)
E) NOTA

25) Find the sum of all values of \(y \) that satisfy the given equation:
\(\log_{y} (y+12) = 2 \quad y > 0 \)

A) \(0\)
B) \(1\)
C) \(4\)
D) \(12\)
E) NOTA

26) Evaluate: \(\sum_{z=1}^{\infty} \frac{1}{2^z} \)

A) \(\frac{1}{2}\)
B) \(1\)
C) \(2\)
D) \(\frac{7}{4}\)
E) NOTA

27) Solve for \(x \): \(\log_7 (\log_5 (\log_2 x)) = 0 \)

A) \(2\)
B) \(4\)
C) \(16\)
D) \(32\)
E) NOTA
28) Given: \(x = a^r, y = a^{2r}, \) and \(z = 2x \) for \(a, x, y, \) and \(z \) all greater than 1. How many of the following are true?

I. \(\log_a a = r \)
II. \(y = x^2 \)
III. \(2y = z^2 \)
IV. \(\log_a \left(\frac{z}{2} \right) = r \)

A) 1 B) 2 C) 3 D) 4 E) NOTA

29) Given: \(a \# b = \begin{cases} a^b & \text{if } a < b \\ \left(\frac{a - 5}{3} \right) \# (b + 1) & \text{if } a \geq b \end{cases} \)

What is the value of \(146 \# 1 \)?
A) 16 B) 27 C) 81 D) 146 E) NOTA

30) How many digits are in \(2004^{2004} \)?
A) 6617 B) 6618 C) 8016 D) 8017 E) NOTA