2004 National Mu Alpha Theta Convention Alpha Division–Number Theory Topic Test

1. What is	the largest prime di	ivisor of 70?		
A. 2	B. 3	C. 7	D. 10	E. NOTA
2. What is	the smallest positiv	e integer consisting	solely of 1's which is divis	sible by three?
A. 1	B. 11	C. 111	D. 1111	E. NOTA
3. What is	the smallest positiv	e integer with three	e different prime factors?	
A. 8	B. 30	C. 60	D. 72	E. NOTA
4. Zero is a statements would I. A negative nu II. A positive nu III. A positive nu IV. A negative nu	not a positive numb ld no longer be cons umber times a positi umber plus a positiv number times a posi number times a neg	er. If it were consi sidered true: ive number is alway ve number is always tive number is alwa ative number is alwa	dered to be positive, which is negative is positive ays positive rays positive	h of the following
A. I only	B. II only	C. I and I	II D. IV only	E. NOTA
5. If a is ev divide a? A. 64	ren and both \sqrt{a} an B. 128	d $\sqrt[3]{a}$ are integers, C. 256	then what is the largest in D. 512	teger which must E. NOTA
6. What is by 13?	the smallest integer	n such that the su	m of the first n positive in	tegers is divisible
A. 11	B. 12	C. 13	D. 14	E. NOTA
7. How man	ny positive even two	o-digit numbers are	multiples of 7?	
A. 6	B. 7	C. 8	D. 9	E. NOTA
8. How man	ny primes are 1 less	than a perfect squa	are?	
A. 0	B. 1	C. 3	D. infinitely many	E. NOTA

2004 National Mu Alpha Theta Convention Alpha Division–Number Theory Topic Test

9. Ninety-nine balloons are released in the cafeteria and float to the ceiling. Jimmy pops n of them. Claire then enters and pops exactly 1/3 of those remaining. The principal then takes exactly 1/4 of the inflated balloons remaining after all that popping. If the principal takes at least one balloon, how many possible values are there of n? (Assume one cannot pop or take a part of a balloon.)

A. 2 B. 8 C. 16 D. 99 E. NOTA

10. When k is divided by 7, the result has a remainder of 3. When j is divided by 7, the result has remainder 4. What is the remainder when k + j is divided by 7?

A. 0 B. 4 C. 6 D. Cannot be determined. E. NOTA

11.	For how 1	many positive	integers n less that	n 9 is $n! + 1$	divisible by n ?	
A. ()	B 1	C 3	5	D 8	E NOTA

12. Which of	the following is the s	mallest: 2^{500} , 3^{400} , 4^{30}	$^{00}, 5^{200}?$	
A. 2^{500}	B. 3^{400}	C. 4^{300}	D. 5^{200}	E. NOTA

13.	What is the greatest common	divisor of 3618 and 938?

A. 2 B. 18 C. 67 D. 134 E. NOTA

14. I write the integers from 2 to 1000 on a piece of paper. I then circle all the primes. I then circle all the previously uncircled numbers which are multiples of 2, 3, 5, or 7. What is the smallest uncircled number remaining?

A. 11 B. 121 C. 143 D. 169 E. NOTA

15. Which of the following is the list of possible units digit of a perfect square that ends with 4 identical digits?

A. 0 only B. 0 or 4 only C. 0, 1, or 4 only D. 0, 1, 4, or 6 only E. NOTA

2004 National Mu Alpha Theta Convention Alpha Division–Number Theory Topic Test

16. We say	x y if x divides y ev	venly. If $m n$ and m	m m, which of the following	ng can we conclude?
A. $m > n$	B. $m = n$	C. <i>m</i> =	1 D. mn ∦m	E. NOTA
17. Two nu numbers less th	umbers are called <i>rel</i> an 120 are relatively	<i>latively prime</i> if the prime to 120?	eir greatest common div	isor is 1. How many
A. 32	B. 36	C. 40	D. 48	E. NOTA
18. Find th	e largest integer that	at evenly divides n	$5-5n^3+4n$ for all integration	zers n.
A. 24	B. 60	C. 120	D. 240	E. NOTA
19. Let n fraction $6/n$ is	be a randomly chose reducible?	en two-digit positiv	ve integer. What is the	probability that the
A. 1/2	B. 2/3	C. 4/5	D. 5/6	E. NOTA
20. Find th	e sum of all positive	e integers x for wh	ich there exists a y such	that $x^2 - y^2 = 35$
A. 6	B. 18	C. 24	D. 48	E. NOTA
21. For how	v many primes p is 2	$2^p + p^2$ also prime?	,	
A. 0	B. 1	C. 3	D. Infinitely many	E. NOTA
22. For how is the greatest of	w many pairs of posicommon divisor of x	tive integers (a, b) and y and $\operatorname{lcm}(x, b)$	is $gcd(a, b) \times lcm(a, b) =$ y) is the least common n	ab, where $gcd(x, y)multiple of x and y?$
A. None	B. 25	C. 144	D. All pairs	E. NOTA

23. If m is divisible by 420 and n is divisible by 294, then what is the largest integer which divides m + n for all values of m and n?

A. 0 D. 7 O. 14 D. 42 E. NOL	A. 6	B. 7	C. 14	D. 42	E. NOTA
------------------------------	------	------	-------	-------	---------

24. How r	nany solutions in p	ositive integers	(x,y) are there to the	the equation $8x + 5y = 107$?
A. 2	B. 4	С.	6 D	E. NOTA
25. A, B	, and C are nonne	gative integers	less than 10. $100A$	+10B + C is divisible by 5.
10A + C is div	visible by 3. $10B +$	C is divisible b	y 4. $10A + B$ is divis	sible by 9. Find $A + B + C$.
A. 3	B. 9	C. 12	D. Cannot be det	E. NOTA
26. How r	nany positive numb	pers less than 72	29 have a base 3 repr	resentation with no 2's?
A. 63	B. 81	C. 1	.00 D.	. 144 E. NOTA
27. For he	ow many positive ir	ntegers k is 120	the least common m	ultiple of 40 and k ?
A. 2	B. 6	C.	8 D.	12 E. NOTA
	210		<i></i>	
28 Thorn	umbor i^2 where i	is an integor lo	aves a remainder of	k when divided by $n \ (k < n)$
How many pos	ssible pairs of value f	is an integer, let (k, n) are the	the with $1 < n < 10$.	κ when divided by $n (\kappa < n)$.
A. 22	B. 23	C.	24 D	E. NOTA

29. We define the set of **cycles** of an integer to be all the integers that are formed by successively moving the units digit to the front and moving all the other digits over one place to the right. For example, the set of cycles of 4275 is $\{5427, 7542, 2754, 4275\}$ and the set of cycles of 51904 is $\{45190, 04519, 90451, 19045, 51904\}$. (Note the treatment of the 0 - it doesn't disappear as we form our cycles!)

How many positive 10-digit integers n (i.e. $10^{10} > n \ge 10^9$) have the property that all members of the set of cycles of n are divisible by 11111?

A. 900009 B. 810009 C. 1110000 D. 0 E. NOTA

30. Given f(1) = 1, f(2n) = f(n) and f(2n+1) = f(2n) + 1 for all integers n, for how many values of n is f(n) = 10 for n < 2003?

A. 2 B. 5 C. 6 D. 9 E	2. NOTA
-----------------------	---------