Provide full solutions to each of the problems below. Partial credit will be awarded. No credit will be given to answers that are given without justification.

1. Let K be a 7-member subset of the smallest 36 positive integers. Show that for every K we can find 4 members of K such that the product of two of them minus the product of the other two is divisible by 5.

2. Let P be a point randomly chosen inside tetrahedron ABCD. Let a_1, a_2, a_3, a_4 be the distances from P to the faces of ABCD. Let b_1, b_2, b_3, b_4 be the lengths corresponding altitudes of the tetrahedron (i.e. if a_i is the distance from P to a face of ABCD, then b_i is the length of the altitude to that face). Prove that

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \frac{a_4}{b_4} = 1$$

3. Given z = 3 + 4i, find with proof the imaginary number w such that |w| = 10 and |w - z| is maximal. (The magnitude of a complex number is determined as follows: if z = a + bi, where a and b are real, then $|z| = \sqrt{a^2 + b^2}$.)

4. Point D is on side BC of triangle ABC such AD bisects $\angle CAB$. Line l pases through A and is tangent to the circle through the vertices of $\triangle ABC$. Prove that the straight line through D parallel to l is tangent to the circle that is inscribed in triangle ABC.

5. Consider the polynomial f(x) with degree n and integer coefficients. Given that

$$f(1) = f(2) = f(3) = f(4) = 2004,$$

prove that there is no integer m such that f(m) = 1.