Mu Alpha Theta National Convention:  Hawaii, 2005

Solutions – Analytic Geometry Topic Test – Open Division

1. (C)  The given equation is the graph of a cone.

2. (E)  If 
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, or a = –1.  It follows that b = 2.

3. (B)  To simplify things, position the coordinates so that the y-axis bisects the parabola and the vertex is at (0, 5); this makes the coordinates of the ends of the base (–3, 0) and (3, 0).  Thus, the equation of the parabola is of the form 
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.  Plugging in (0, 5) into the equation results in A = 5/9.  The height of the box is simply the y-value obtained when x = 2, or 
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4. (A)  Let (ABD = x.  Since triangle ABD is isosceles, (BAD = x, and so by the Exterior Angle theorem, (BDC = 2x.  Since triangle DBC is also isosceles, (DBC = (DCB, and so (DCB = 90( – x.  Hence, (ABC = (ABD + (DBC = x + 90( – x = 90(, so (ABC is a right angle.  It follows that AB and BC are perpendicular, so if AB has a slope of .75, BC has a slope of –4/3.

5. (B)  The z-coordinate in Cartesian coordinates is the same as the z-coordinate in Cylindrical coordinates, so we’re a third of the way there.  All that’s left is to find a polar representation of the Cartesian point (3, 3).  We have 
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6. (B)  The given graph is a parabola, and so the closest the graph will ever get to the line y = –1 is at the vertex.  From the results from the first problem, the x-coordinate of the vertex is 
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 and consequently, 
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7. (C)  By Heron’s formula, the area of the triangle is 
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.  Now, drop altitude BD.  From the basic area of a triangle formula, 
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, so       BD = 12, making AD = 5 (Pythagorean triple) and DC = 9.  The solid created when the triangle is revolved about line L consists of two right circular cones that are glued together at the base, which is the circle formed when B is rotated about L.  Thus, the desired volume is equal to 
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8. (C)  The slopes of the lines are 2 and 1/3, respectively.  If 
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 is the angle between the lines, then 
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9. (D)  Let A = (4, 6), B = (7, 7), and C = (12, 6)  The midpoint of AC is (8, 6), and since the perpendicular bisector of a chord passes through the center of a circle, the coordinates of the center must be of the form (8, y).  Since the distance from the center to any point in the circle is a constant, we have 
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.  Solving produces y = –1, and so the radius of the circle is 
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10. (D)  Choosing (1, 0, –2) as the origin, we use the other three points and form the vectors     [1, 3, 3], [1, 1, –2], and [–2, 2, 1].  Using the triple scalar product, the volume of the tetrahedron is 
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11. (B)  The given cross section must be the one along the axis of the cone, since any other planar cross section that’s perpendicular to the base would produce a hyperbola.  The region creates an isosceles triangle with base 8 and height 4, and so the radius and height of the cone are both 4.  The volume is then 
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12. (A)  We have 4p = 8, so p = 2.  Since the vertex is at (–3, 1), the focus is at (–1, 1).  The coordinates of the latus rectum are then found by setting x = –1 in the parabola equation.  Thus, 
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 is the distance from the focus to one endpoint of the latus rectum.  Thus, the length of the latus rectum is 8 and the area of the triangle is 
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13. (B)  The equations of the circles are 
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.  By the symmetry of the circles about x = 6, the y-values of the intersection points are going to be equal, i.e. t = k.  Subtracting the second equation of the circle from the first, we get 
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14. (A)  The equation of line L is 
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.  To find the distance between the lines, we take a “nice” point from K, say, (0, 3) and use the standard point-to-line distance formula.  In standard form, the equation for line L is 4x – y – 20 = 0, so the desired distance is 
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15. (D)  Each focus bisects its respective latus rectum.  Thus, the foci of the ellipse are the midpoints of AB and CD.  In particular, the midpoint of CD is (2, –6).

16. (D)  The equation of the ellipse is of the form 
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17. (C)  Since 
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18. (D)  Position the xy-axes such that the y-axis bisects the tunnel and the center at its highest point is at (0, 36).  The equation of the tunnel is then given by 
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 for y ( 0.  At six feet from the edge of the tunnel, x = 24, so the corresponding height is 
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19. (D)  Graphing the two conics, we easily find that there are three intersection points.

20. (E)  Graphing the ellipse, it’s easy to see that each statement is true except for II, since (4, 4) is an endpoint of the minor axis, not major.

21. (C)  Squaring each of the equations results in 
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22. (C)  The slope of the given line is 2, so we find all points in the hyperbola with tangent lines having slope 2.  Differentiating implicitly, we have 
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23. (C)  The sum of the areas of the two circles is, of course, 
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24. (E)  Approach the problem as finding the area of a triangle given three points in the plane whose side lengths are equal to the ones given.  There are many sets of points that work, but a convenient choice would be (0, 0), (12, 10), and (8, 15).  By the standard triangle area matrix formula, the answer is 
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25. (C)  As n approaches positive infinity, the region becomes a square with side length 2, hence the limit of the area is 4.

26. (D)  If 2|AB| = |BD|, then B is the trisection point of AD that’s closer to A.  Thus, 
[image: image64.wmf]7810(2)

B7,10(2,6)

33

æ----ö

=-+-=-

ç÷

èø

.  If B is the midpoint of EF and F = (x, y), then 
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.  Thus, F = (9, 4), and the sum of the coordinates is 13.

27. (C)  We interpret this question as a geometry problem of minimizing the sum of the lengths of two line segments.  Let A = (0, 0), B = (x, 0), C = (28, 0), D = (0, 20), and E = (28, 25).  Notice that the expression in the problem is the sum of the lengths of the line segments DB and BE.  If we reflect D about the x-axis to get a point D’, note that |DB| + |BE| is equal to  |D’B| + |BE|.   The sum |D’B| + |BE| will be minimized if D’, B, and E are collinear.  Thus, the desired minimum is just the distance from D’ to E.  Since D’ = (0, –20), the answer is 
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28. (B)  Notice that 
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, so the points A, B, and the origin are collinear.  Since the distance between A and B is 16, the midpoint of AB can be obtained by going 8 units along AB starting at A.  Minding the restrictions on r and (, we get the polar point 
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29. (A)  Let P = (a, b) be a lattice point.  Since P is in the first quadrant, a and b are both positive.  The standard forms for the two lines are 2x – y – 4 = 0 and 2x + y – 4 = 0.  The problem requires that the distance from 2x – y – 4 = 0 be three times the distance from P to                2x + y – 4 = 0.  Using the point-to-line distance formula, we have
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This reduces to 
[image: image70.wmf]24324

abab

--=+-

, or 
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, which breaks up into a + b = 2 and 4a + b = 8 in the plus and minus case, respectively.  For the first equation, since a and b are positive integers, (a, b) must equal (1, 1).  For the second equation, (a, b) must equal (1, 4).

30. (D)  Complete the square on the circle equation to get 
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.  Notice that the tangent segment, the radius of the circle to the point of tangency, and the segment connecting (8, 11) to the center of the circle form a right triangle.  If we call the length of the tangent L, then by the Pythagorean theorem, 
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