Mu Alpha Theta National Convention:  Hawaii, 2005

Solutions – Circles & Polygons Topic Test – Theta Division

1. (A) Each side is 2.  The area =
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2.  (B) The interior angle is 177 degrees; the exterior angle is 3 degrees. Number of sides = 360/3 = 120.

3.  (C) The perimeter is unchanged.

4. (A) The area is half the product of the diagonals.

5. (C) Corresponding angles of similar figures are congruent.

6. (C) Any interior angle and exterior angle are supplementary in a regular polygon.

7. C) The inscribed right angle forms a 
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 arc, so the hypotenuse of the triangle is the diameter of the circle.  Pythagoras takes care of the rest. 

8. (B) The radius is half the diagonal.  Each side is 
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, and the area is 32.

9. (C)
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  by vertical angles.  An exterior angle equals the sum of the non-adjacent interior angles, so 
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, and the answer is 60.

10. (B) Consecutive angles of a parallelogram are supplementary.  
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, then 
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11. (C) A hypotenuse of 30 would give a non-integral leg of 
[image: image8.wmf]105

 by the Pyth. Theorem.

12. (A) If each side of the square is x, so is the midline.  The area of the square is 
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.  The hypotenuse is x, and each side is 
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.  The area of the triangle is 
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, and the ratio of the areas is 1/4.

13.  (B)  
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   and    
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Let’s solve both for 
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and set the results equal to each other.
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.  Plug back into either formula to find 
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14. (A)  Forget the actual measurements – of the hexagon.  Let’s go general to save our sanity.  Call each side of the hexagon 2X.  Then we are worried about the shape shown below in quadrant I. [image: image17.png]


 

Rotating about the x-axis will yield a cone atop a cylinder.  The cone has volume 
[image: image18.wmf]
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.  The cylinder has volume 
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.  The total volume is then 
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Rotating about the y-axis yields a frustum.  Its volume is 
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 EMBED Equation.DSMT4  [image: image23.wmf]3
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.  Squaring both and setting the first atop the second yields     
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15. (C)  Let k be the constant of proportionality.   The area of the large circle is 
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.  The probability of hitting the shaded area is 
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16. (B) Opposite angles of  a convex  trapezoid are supplementary. 
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 is opposite
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17. (A) 
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18. (B) The sum of the angles of a pentagon is 
180(5-2)=540. So
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,and x = 90. 

19. (B)  The diameter of the small circle is 2, and so is each side of the square.  The diagonal of the square is 
[image: image32.wmf]22

, and the radius of the large circle is half that.  Its area is 
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20. (B) The area of a regular polygon is half the product of its apothem and perimeter.  
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21. [image: image1.wmf]2

1.5(2)363

=

(D) The slopes of  y= x+2 and y=-x are negative reciprocals, so the lines are perpendicular.  The triangle is isosceles, because it’s symmetric about the line x = -1. The distance formula confirms this. 
 

22. (A) The square in the middle has an area of 4.  Each angle of a regular octagon is 
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, so the white areas are 45-45-90 triangles.  The 4 rectangles have sides measuring 2 and 
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, and areas of 
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. The sum =
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23. (D) The ratio of the perimeters is the square root of the area ratio.  
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24. (A)  Note that the vertices of the polygon do not necessarily have to be among the listed points.
A possible quadrilateral is shown above.

25. (C) 
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26. (D) The circumference of the circle is 
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, and the arc between each consecutive vertex of the 18-gon measures 
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.  We go across 12 such arcs, and the sum is 
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27. (D) The triangle formed is isosceles, and can be split into two 30-60-90 triangles, each with a short leg of 6 and a long leg of 
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.  The sum of their areas is 
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.  The sector has an area of 
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28.  (A) Note that 
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. 
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 by IASST.  Arc BDC
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.  BD is a diameter; its arc is 180 degrees.  So arc CD = 260-180 = 80.













29. (C)  Let 
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 , and r = the radius of the circles.   
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 is isosceles, so 
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 by SAS.   Now 
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 is isosceles.  Draw a line which perpendicularly bisects 
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 at G.  Now 
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 by HA.   Then 
[image: image60.wmf]QGPG

@

, and the 4 small right triangles are congruent by SSS.  The corresponding angles at A and B are all congruent, so the 4 obtuse triangles are congruent by SAS.  Finally, the four sides of the quadrilateral in question are congruent.  



30. (D) The dodecagon can be divided into 24 congruent right triangles.  In each, the angle at the center is (360/24) = 15, and the angle at the vertex is 75.  The short side of the triangle is (x/2) and to find the height the trig ratio 
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 is solved.  
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.  The area of the triangle is 
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.  There are 24 of these triangles comprising the dodecagon, so the total area is 
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