Mu Alpha Theta National Convention:  Hawaii, 2005

Solutions – Matrices & Determinants Topic Test – Theta Division

1. (C)  A singular matrix has determinant equal to zero.  Going through each of the answer choices, we see that the only singular matrix is the one in choice C.

2. (C)  Setting some of the corresponding entries equal to each other, we get 
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3. (D)  Expanding the matrix with respect to the first row yields
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4. (B)  If 
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5. (C)  The element in the second row and first column of  
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, which is –3.  So the answer is 8 – (–3) = 11. 

6. (C)  For a product of two matrices to be defined, the number of columns of the first matrix must equal the number of rows of the second matrix.  Note that ABC is not defined unless      n = m and a = b.  If 
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 is defined, then a = b, which isn’t necessarily true; same thing with 
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7. (A)  Say the matrices are A and B, then 
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.  Add the two equations together to get  
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8. (D)  Statements I and III are standard theorems.  Statement II is easy to disprove by finding a counterexample, say, 
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.  Note that here tr(A)tr(B) = –24, but tr(AB) = 0.

9. (A)  First, note that 
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.  Thus, the characteristic polynomial is 
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.  The smaller root of this polynomial is –5.

10. (B)  This is asking about Cramer’s Rule, which says that the value of a variable is equal to a fraction whose denominator is the determinant of the coefficients of the left side of the given equations and whose denominator is the same determinant with the column corresponding to the desired variable replaced by the right side of the given equations.

11. (C)  The system will not have a unique solution if the determinant of the coefficient matrix is equal to 0.  Thus, we have
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The solution to this equation is, of course,  –7.

12. (A)  Let 
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So choice A is true.  Now, to disprove the other choices.  In choice B, the given summation is the entry in the ith row and jth column of 
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, not AB.  It’s easy to find a counter-example for choice C; just multiply a 3 ( 2 matrix with a 2 ( 3 matrix (in that order) to obtain a 3 ( 3 matrix.  For choice D, just take 
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13. (C)  By the standard matrix formula, the area is equal to 
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14. (B)  By the inverse “trick” for 2 ( 2 matrices, 
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.  Left-multiplying both sides of the given equation by this inverse yields


[image: image35.wmf]126967

47082420

B

----

éùéùéù

==

êúêúêú

--

ëûëûëû

.

So the sum of the entries of B is –6 – 7 + 24 + 20 = 31.

15. (B) The answer is simply the sum of the fourth row and third column entry of the first matrix and the third row and fourth column entry of the second matrix, or –1 + 0 = –1.

16. (D)  Using properties of logarithms, 
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17. (A)  We have 
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18. (A)  By the distributive property, 
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.  Note that we can’t combine the middle terms because matrix multiplication isn’t necessarily commutative, i.e. it is not always the case that 
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19. (B)  Note that if 
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, so indeed, the matrix in choice B is a perfect square.

20. (E )  The inverse of a matrix is the adjoint (transposed matrix of cofactors) divided by the determinant.  This produces 
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21. (A)  Using the right-most column will make it easier to keep track of the x’s, and gives 
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22. (D)  The problem states that (a, b, c, d) is a permutation of the first four natural numbers along with ad – bc > 0.  The number of possible permutations is small (all the more so because certain entries can be switched without changing the value of the determinant of X), so just play around with arranging the numbers into the variables.  Doing so, we find that      N = 10 and n = 2, making their ratio 5 : 1.

23. (C)  The characteristic polynomial of the given matrix is


[image: image49.wmf]2

37

()(3)(1)35238

51

x

pxxxxx

x

+-

==+--=+-

--

.

From problem 9, we know that the roots of this quadratic are the eigenvalues of the given matrix.  Let these eigenvalues equal a and b.  By the standard formula for the sum and product of the roots of a quadratic, we have a + b = –2 and ab = –38.  Thus, the desired answer is 
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24. (A)  Traveling along the line, we see that another point on the line is (–3 + 2, 4 + 3) = (–1, 7).  For any point (x, y) on the line, the area of the triangle formed by (x, y), (–3, 4), and (–1, 7) must be equal to 0 since the points are collinear.  By the area of a triangle formula, we have
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25. (B)  We compute several powers of A and try to find a pattern.  Note that 
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 (which can be proven more rigorously using induction), and thus 
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26. (A)  To make things a lot simpler, just let a = d = 1 and b = c = 0.  Then n = 1 and 
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27. (E)  The sum of all the entries in a magic square of order 5 is 
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.  Another way to sum up all the entries is to note that it is simply 5 times the sum of any particular row (or column…or diagonal for that matter).  Since the sum of the entries of any row is equal to the magic constant, the answer is just one-fifth of 325, or 65.

Note: It is possible to construct a magic square of order 5.  For example,
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28. (E)  The determinant of 
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.  Choosing 9, 8, and 7 for a, e, and i to make a large positive term leads one to want to minimize fh, cg, and bd to reduce the magnitude of the negative terms.  Choosing 5, 4, and 6 for c, d, and h works to make another large positive term and minimize the magnitude of the negative terms, leaving 3, 1, and 2 for b, f, and g.  The final matrix is 
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29. (B)  If x is the desired positive number, then 
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30. (C)  If we let 
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[image: image68.wmf]2

23

ab

c

+=

.  Some guess-and-checking quickly gives the solution (a, b, c) = (4, 2, 5), and so B is a 2 ( 2 matrix.  Now we show that this solution is unique.  Taking the equation 
[image: image69.wmf]2

23

ab

c

+=

 modulo 3, we get 
[image: image70.wmf]2

2mod3

a

c

º

, or 
[image: image71.wmf]2

(1)mod3

a

c

-º

.  Since the perfect squares in modulo 3 are only 0 and 1, this must mean that a is even, say, a = 2x.  Plugging this back into the equation, rearranging, and factoring produces 
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[image: image77.wmf]/2

312

m

-=

 and 
[image: image78.wmf]/2

314

m

+=

, making m = 2.  If m = 2, then x = 2 and a = 4.  It follows that b = 2 and c = 5.
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