Mu Alpha Theta National Convention:  Hawaii, 2005

Solutions – Matrices & Vectors Topic Test – Alpha Division

1. (C)  A singular matrix has determinant equal to zero.  Going through each of the answer choices, we see that the only singular matrix is the one in choice C.

2. (C)  Setting some of the corresponding entries equal to each other, we get 
[image: image1.wmf]2343

xy

-=+

 and 
[image: image2.wmf]5124

xy

++=

.  Solving these two equations simultaneously yields x = 1 and y = –1, so 
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3. (D)  Expanding the matrix with respect to the first row yields
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4. (B)  If 
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5. (C)  The element in the second row and first column of  
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, which is –3.  So the answer is 8 – (–3) = 11.

6. (C)  For a product of two matrices to be defined, the number of columns of the first matrix must equal the number of rows of the second matrix.  Note that ABC is not defined unless      n = m and a = b.  If 
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 is defined, then a = b, which isn’t necessarily true; same thing with 
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7. (A)  Say the matrices are A and B, then 
[image: image13.wmf]88

112

AB

éù

+=

êú

ëû

 and 
[image: image14.wmf]810

110

AB

-

éù

-=

êú

-

ëû

.  Add the two equations together to get  
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8. (D)  Statements I, III, and IV are standard theorems.  Statement II is easy to disprove by finding a counterexample, say, 
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.  Note that tr(A)tr(B) = –24, but tr(AB) = 0.

9. (A)  The characteristic polynomial is 
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.  The smaller root of this polynomial is –5.

10. (B)  Since 
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, the vector in choice B is an eigenvector (with a corresponding eigenvalue of 2).  It’s easy to check that the vectors in the other answer choices do not yield a scalar multiple of the vector when multiplied with the given matrix.

11. (C)  The system will not have a unique solution if the determinant of the coefficient matrix is equal to 0.  Thus, we have
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The solution to this equation is, of course,  –7.

12. (A)  Let 
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So choice A is true.  Now, to disprove the other choices.  In choice B, the given summation is the entry in the ith row and jth column of 
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, not AB.  It’s easy to find a counter-example for choice D; just multiply a 3 ( 2 matrix with a 2 ( 3 matrix (in that order) to obtain a 3 ( 3 matrix, for instance.  For choice C, just take 
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13. (C)  By the standard matrix formula, the area is equal to 
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14. (B)  By the inverse “trick” for 2 ( 2 matrices,
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Left-multiplying both sides of the given equation by this inverse yields
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So the sum of the entries of B is – 6 – 7 + 24 + 20 = 31.

15. (B)  Since a ( c = –7, b ( c = –36, and the dot product is distributive, we have
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16. (B)  By the standard formula, if (  is the angle between the vectors, then
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17. (C)  Let 
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, the standard rotation matrix.  Notice that if 
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18. (C)  Let’s find several values for 
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Thus, we have 
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where we use the Fibonacci identity 
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 to simplify the sum.  Calculating the Fibonacci sequence recursively, we find that 
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19. (B)  Let the eigenvalues of A be a, b, and c; we know that these are precisely the roots of the characteristic polynomial.  Using the standard formulas relating the roots of a polynomial to its coefficients, we have 
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20. (A)  The total amount of money the man spent on stock x is the dot product of the vector that represents the price of stock x in each of the days and the vector that represents the number of shares of stock x the man bought in each of the days.  The first vector is the xth column of A while the second is the xth row of B.  Since multiplication of two matrices takes rows from the first matrix and computes its dot product with columns from the second matrix, the desired entry is in the xth row and xth column of 
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21. (E)  Given a square matrix of order greater than 2 whose rows and columns form arithmetic progressions, we can always use an appropriate set of row operations to get one row (or column) to equal another row, and consequently, we can make any row or column in A consist entirely of zeroes.  Thus, the determinant of A is 0.

22. (B)  Direct calculation of the entries shows that 
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23. (E)  Expanding, we obtain (a + 2b) ( (3a + 4b) = 3(a ( a) + 4(a ( b) + 6(b ( a) + 8(b ( b).  Since the cross product of a vector with itself is the zero vector and that switching the order of the cross product negates the result, we have 4(a ( b) – 6(a ( b) = –2(a ( b) = –2v.

24. (A)  Using properties of the cross product, we have
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25. (B)  If u and v are the two vectors, then we know that 
[image: image70.wmf]sin

q

´=

uvuv

 and 
[image: image71.wmf]cos

q

·=

uvuv

, where (  is the angle between the two vectors.  Combining these two formulas gives us 
[image: image72.wmf]sin

tan

cos

q

q

q

´

==

·

uvuv

uvuv

.  So the answer is


[image: image73.wmf]222

19(6)(2)

401

tan

33

q

+-+-

==-

-

.

26. (A)  We have 
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, but notice that we don’t need to compute the entire cross product, as the dot product of any 3d vector with [0, 1, 0] produces the y-component of the vector.  So we only need the y-component of a ( b, which is 
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27. (B)  The expression in choice A doesn’t make sense because somewhere it involves subtracting a vector from a scalar.  This also happens in choices C and D except a scalar is being subtracted from a vector.  The only meaningful expression is the one in choice B.

28. (B)  We can plug in each of the points in each answer choice to find that choice B is the correct answer.  Alternatively, setting (1, 1, 1) as the origin and using the other two points, we find that two vectors that span the plane are [0, 1, –1] and [–2, 1, 0].  Thus, a normal vector to the plane is [0, 1, –1] ( [–2, 1, 0] = [1, 2, 2], so the equation of the plane is 
[image: image76.wmf]1(1)2(1)2(1)0

xyz

-+-+-=

, or after some rearranging, x + 2y + 2z = 5.

29. (C)  Pick (3, –1, 2) as an origin and make vectors with the other three points.  This produces the vectors [–5, –6, 1], [2, 0, 4], and [1, 7, 0].  Using the triple scalar product, the volume of the tetrahedron is none other than


[image: image77.wmf]561

113065

204

663

170

--

==

.
30. (D)  The direction vectors for the given lines are [5, –2, –4] and [–8, 3, 7].  By the angle-between-vectors formula,
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The above result is for the obtuse angle between the vectors, but since the cosines of supplementary angles are negatives of each other, the answer is 
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