Mu Alpha Theta National Convention:  Hawaii, 2005

Solutions – Matrices & Vectors Topic Test – Mu Division

1. (C)  A singular matrix has determinant equal to zero.  Going through each of the answer choices, we see that the only singular matrix is the one in choice C.

2. (C)  Setting some of the corresponding entries equal to each other, we get 
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3. (D)  Perform the following sequence of row operations in order to get the matrix into row-echelon form: 
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which has two pivots (the first two columns), and therefore, has rank 2.

4. (B)  If 
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5. (C)  The element in the second row and first column of  
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, which is –3.  So the answer is 8 – (–3) = 11.

6. (C)  For a product of two matrices to be defined, the number of columns of the first matrix must equal the number of rows of the second matrix.  Note that ABC is not defined unless      n = m and a = b.  If 
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 is defined, then a = b, which isn’t necessarily true; same thing with 
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7. (A)  Say the matrices are A and B, then 
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8. (D)  Statements I, III, and IV are standard theorems.  Statement II is easy to disprove by finding a counterexample, say, 
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.  Note that tr(A)tr(B) = –24, but tr(AB) = 0.

9. (A)  The characteristic polynomial is 
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.  The smaller root of this polynomial is –5.

10. (B)  Since 
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, the vector in choice B is an eigenvector (with a corresponding eigenvalue of 2).  It’s easy to check that the vectors in the other answer choices do not yield a scalar multiple of the vector when multiplied with the given matrix.

11. (C)  The system will not have a unique solution if the determinant of the coefficient matrix is equal to 0.  Thus, we have
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The solution to this equation is, of course,  –7.

12. (A)  Let 
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So choice A is true.  Now, to disprove the other choices.  In choice B, the given summation is the entry in the ith row and jth column of 
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13. (C)  By the standard matrix formula, the area is equal to 
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14. (B)  By the inverse “trick” for 2 ( 2 matrices,
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Left-multiplying both sides of the given equation by this inverse yields
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The sum of the entries of B is – 6 – 7 + 24 + 20 = 31.

15. (B)  Since a ( c = –7, b ( c = –36, and the dot product is distributive, we have
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16. (D)  Notice that 
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The product of the entries is 0.

17. (B)  The two vectors will be orthogonal when their dot product is 0.  Thus

[–7, 3, 1] ( [13, 37, 
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The smaller solution to this equation is c = 4.

18. (C)  First, form the augmented matrix 
[image: image46.wmf]101100

001010

210001

éù

êú

êú

êú

ëû

.  Perform the following sequence of row operations on both sides of the line to turn the left side into the identity matrix; the outcome of the right side is the desired inverse: 
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19. (B)  Using the standard formula, the distance is 
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20. (B)  Using properties of the cross product, we have
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21. (A)  For each determinant d in the sum, we can find a corresponding determinant whose matrix is the same as the matrix of d, but with the first two rows switched.  Since switching rows changes the sign of the determinant, d and its negative counterpart will cancel each other out in the sum, leaving us with a sum of 0.

22. (A)  Finding powers of A can be a pain, so instead, let’s see what A does to a certain vector:
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We now see that A is simply a vector-permutation matrix that shifts the components downward, with the lowest entry moving to the top.  Thus, it takes six applications of A in order to revert a vector into its original form—in other words, 
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23. (D)  The characteristic polynomial of A is 
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 (that is, the characteristic polynomial of a matrix evaluated at the matrix is equal to the zero matrix), and it follows that the determinant of 
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24. (D)  Let a = [1, 9, –5] and b = [1, –2, 2].  By the standard formula, the projection of a along b is given by 
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25. (C)  If we let 
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26. (B)  Instead of working out the entire matrix product and inverse, we use the fact that the determinant of a product is the product of the determinants.  So we have
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Directly substituting 0 in for x gives the limit, 
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27. (D)  Let’s try to find a pattern with the powers of (.  Observe that
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Recalling the cosine Maclaurin series for real numbers, 
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28. (A)  Since 
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29. (A)  The (signed) scale factor in which the old area is multiplied is precisely the determinant of the transformation matrix.  Thus, the answer is the absolute value of the determinant of 
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30. (A)  Let’s find several values for 
[image: image94.wmf]n

A

 as well as corresponding values for 
[image: image95.wmf]()

n

A

s

 and try to find a pattern.  Note that


[image: image96.wmf]11

10

A

éù

=

êú

ëû

, 
[image: image97.wmf]2

21

11

A

éù

=

êú

ëû

, 
[image: image98.wmf]3

32

21

A

éù

=

êú

ëû

, 
[image: image99.wmf]4

53

32

A

éù

=

êú

ëû

, and 
[image: image100.wmf]5

85

53

A

éù

=

êú

ëû

.

Thus, we have 
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Solving the equation 
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