1. For what value of x is $f(x) = 2$ for $f(x) = 2x-1$?								
A. 3	B. $\frac{3}{2}$	C. 2	D. $\frac{1}{2}$	E. NOTA				
2. If $f(g(x)) = g(f(x)) = x$ for all real numbers x, and $f(2) = 5$, and $f(5) = 3$, then give the value of $g(3) + g(f(2))$.								
A. 7	B. 5	C. 3	D. 2	E. NOTA				
3. If $A(x) = x-3 $ then give an expression equal to $A(x)$ for all values of x less than -5 .								
A. <i>x</i> +3	B. $-x+3$	C. <i>x</i> -3	D. – <i>x</i> – 3	E. NOTA				
4. If $f(x) = x^2 - 3x - 4$ then for how many integer values of x is $f(x) < 0$?								
A. 0	B. 4	C. 6	D. 7	E. NOTA				
5. For $f(x) = x^3 - 10x^2 + Ax + B$, A and B are constants. If f has one root at x=2, and $A + B = 9$ then give the value of $f(1)$.								
A. 0	B. 1	C. 2	D. 4	E. NOTA				
6. For $g(x) = 2x^{\frac{2}{3}}$ if $g(2x) = \sqrt[3]{2^{11}}$ for $x > 0$ then $x = ?$								
A. 16	B. 8	C. 4	D. 2	E. NOTA				
7. For $f(x) = Arc \cot x$ give the value of $f(-\sqrt{3})$.								
A. $-\frac{\pi}{3}$	B. $-\frac{\pi}{6}$	C. $\frac{2\pi}{3}$	D. $\frac{5\pi}{3}$	E. NOTA				
8. Given the function $f(x) = \sec^2 x - \tan^2 x$, for how many values of x over the domain $[0, \frac{\pi}{2})$ is $f(x) = 0$?								

A. none B. one C. two D. infinitely many E. NOTA

9.

f(x)	2	3	8	2	1
g(x)	3	4	6	1	8
x	1	2	3	4	5

Functions f and g are defined over all real numbers; f is an even function and g is an odd function. Find the value of f(g(1)) + g(-1) + f(-2).

- A. 14 B. 8 C. 3 D. 0 E. NOTA
- 10. Every point of the curve $f(x) = \frac{1}{4}x^2 \frac{1}{2}x + \frac{9}{4}$ is equidistant from the line y = 1 and the point (a, b). Give the value of b.
 - A. 2 B. 3 C. 4 D. 6 E. NOTA

11. What is the area between the graph of $f(x) = \sqrt{9 - x^2}$ and the x-axis?

A. 9π B. 3π C. $\frac{9}{2}\pi$ D. $\frac{3}{2}\pi$ E. NOTA

12. For the domain [0, 90°), let A(x) be defined as the angle of inclination of the graph of the line f(x,m) = mx-1. What is the value of A(x) for f(x, 1/2)
A. Arc tan(0.5) B. Arc tan(0.5) + 45° C. Arc tan(2) D. Arc tan(2) + 45° E. NOTA

- 13. $f(x) = x^3 10x^2 + Dx + E$ for D and E integers, and f(2) = 0. If two of the roots of f are r_1 and r_2 , and neither is equal to 2, then $r_1 + r_2 =$
 - A. 0 B. 6 C. 8 D. 12 E. NOTA
- 14. For $f(x) = \tan x$ when $0 < x < \frac{\pi}{2}$, which is a function g that represents $\sin x$ over the same domain, in terms of f?

A.
$$g(x) = \frac{1}{1 - (f(x))^2}$$
 B. $g(x) = \frac{f(x)}{\sqrt{1 + (f(x))^2}}$ C. $g(x) = \frac{-f(x)}{\sqrt{f(x) - 1}}$

D. $g(x) = \sqrt{1 - f(x)}$ E. NOTA

15. How many complex roots does the function $y = 2x^4 - 3x^3 + x^2 + 2x + 1$ have?

16.
$$f(x) = \cos(x)\sin(\frac{\pi}{2} - x) + \sin(x)\cos(\frac{\pi}{2} - x)$$
. If $f(K) = A$ for $0 < K < \frac{\pi}{2}$ then give the value of $f(\frac{K}{2})$.

A.
$$\frac{A}{2}$$
 B. $\frac{1}{2}A(A-1)$ C. $\frac{\pi}{2}-A$ D. 1 E. NOTA

17.
$$f(x) = \frac{\sin x}{1 - \frac{\sin x}{1 - \frac{\sin x}{1 - \dots}}}$$
 for $0 < x \le \frac{\pi}{2}$. The least value of x in this interval where $f(x) = \frac{1}{4}$

is $Arc\sin(k)$. What is the value of k?

A. 1 B.
$$\frac{1}{4}$$
 C. $\frac{3}{4}$ D. $\frac{3}{16}$ E. NOTA

18. In a computer game, I have won 4911 games and lost 1274 games. The computer shows my "percent won" as 79% since it rounds to the nearest whole percent. How many consecutive games do I **<u>now</u>** need to play and win (there are no ties allowed) for me to first show 80%.

A. 138 B. 140 C. 184 D. 185 E. NOTA

- 19. For $f(x) = |\sin x|$, over the domain $\left[\frac{\pi}{2}, 4\pi\right]$, if the solutions to $f(x) = \frac{\sqrt{3}}{2}$ are from least to greatest, $a_1, a_2, ..., a_n$ then give the value of a_3 .
 - A. $\frac{7\pi}{6}$ B. $\frac{4\pi}{3}$ C. $\frac{5\pi}{3}$ D. $\frac{11\pi}{6}$ E. NOTA

20. The lengths in centimeters of the sides of four triangles are

I. 7, 24, 25 II.
$$6\frac{1}{2}$$
, $8\frac{1}{2}$, $10\frac{1}{2}$ III. 4, $7\frac{1}{2}$, $8\frac{1}{2}$ IV. 14, 48, 50

Of these four given triangles, the only right triangles are ...

- A. I and II B. I and III C. I, II, and IV D. I, III, and IV E. NOTA
- 21. For $f(x) = 2(\log x + \log(x+1) + \log(x+3))$, the value of f(k) is equal to $2 + 2\log 3$. Give the value of k.
 - A. 1 B. 2 C. 3 D. 9 E. NOTA
- 22. For the domain $[0, \pi]$, the graphs of $y = \sin x$ and $(x-a)^2 + (y-b)^2 = c$ share a maximum y-value, while the latter graph has its minimum value 0. What is the value of $a \cdot b \cdot c$?
 - A. $\frac{\pi}{2}$ B. $\frac{\pi}{8}$ C. $\frac{\pi}{16}$ D. 0 E. NOTA
- 23. The radius of a sphere varies directly as the cube root of its volume. What is the constant of proportionality?
 - A. $\sqrt[3]{\frac{3}{4\pi}}$ B. $\pi\sqrt[3]{\frac{3}{4}}$ C. $\frac{4}{3\pi}$ D. $\frac{4}{3\pi}$ E. NOTA
- 24. The probability of rain Monday is 0.3 and the odds that it will rain Tuesday are 1:4. What are the odds that it will rain on at least one of these two days?
 - A. 3:40 B. 11:14 C. 11:25 D. 47:3 E. NOTA
- 25. The function *P* is defined so that P(x) gives the probability that, given *x* marbles of which (x 2) are red, and the remaining marbles are blue, a person can randomly choose a marble and get a blue marble. The domain of *P* is $[5, \infty)$. What is the value of *k* for which P(k) = 0.02?
 - A. 95 B. 97 C. 98 D. 100 E. NOTA

26. For
$$f(x) = \frac{1}{x^2 - x}$$
 and $i = \sqrt{-1}$ then $f\left(\frac{1 - i\sqrt{3}}{2}\right) =$
A. -2 B. -1 C. $1 + i\sqrt{3}$ D. 2 E. NOTA

27. A triangle has two angles which measure 30 and 45 degrees. If the side opposite of the 45 degree angle has length *x* then the function *A*(*x*) gives the area of the triangle, for domain *x* > 0. Find the value of *A*(4).

A. $2\sqrt{6}$ B. $2\sqrt{3} + 2$ C. 3 D. $\sqrt{3} + 1$ E. NOTA

28. The area of a triangle RST is A(x) for $x = \sin(S)$. If the geometric mean (mean proportional) of side lengths RS and ST is $\frac{1}{4}A(k)$, and A(k) = 48 then k =A. $\frac{1}{16}$ B. $\frac{1}{4}$ C. $\frac{2}{3}$ D. $\frac{8}{9}$ E. NOTA

- 29. There is a function f, such that f(1) = 6 and f(4) = 18. All values of f are positive and f(1), f(2), and f(3) form a geometric sequence, while f(2), f(3), and f(4) form an arithmetic sequence. Give the product of f(2) and f(3).
 - A. 12 B. 24 C. 108 D. 121.5 E. NOTA

30. The function B(x) is the base ten representation of the number $221_{(base x)}$ for $x \ge 3$. Give the value of

5k - 5 for B(k) = 265.

A. 10 B. 12 C. 15 D. 50 E. NOTA