

1.	$\sum_{x=1}^{4} (x+3) =$					
	A. 11	B. 13	C. 21	D. 22	E. NOTA	
2. $\sin 1^\circ \cdot \sin 2^\circ \cdot \sin 3^\circ \cdot \ldots \cdot \sin 359^\circ =$						
	A. $\frac{3}{2}$	B. $\frac{2}{3}$	C. $\frac{\sqrt{3}}{2}$	D. –1	E. NOTA	
3. An arithmetic sequence has common difference 4 and the 10^{th} term is 12. What is the first term?						
	A98	B32	C24	D22	E. NOTA	
4.	4. $(\log_2 3) \cdot (\log_3 4) \cdot (\log_4 5) \cdot (\dots) \cdot (\log_7 8) =$					
	A. 2	B. 3	C. 4	D. 8	E. NOTA	
5. Which describes the sequence 0.12, 0.22, 0.32, 0.42, ?						
A C	A. arithmetic with com C. arithmetic with comr	mon difference 0.1 non difference 0.2	B. geometric with co D. geometric with co	ommon ratio 0.2 ommon ratio 2	E. NOTA	
6. For $i = \sqrt{-1}$, $\sum_{n=1}^{20} (i)^n =$						
	A. 0	B. 2	C. 4	D. <i>i</i>	E. NOTA	
7. For $i = \sqrt{-1}$, $\sum_{n=1}^{20} (i)^n =$						
	A. 0	B. 10	C. 20	$D.20\sqrt{2}$	E. NOTA	
8. The first four terms of a geometric sequence are R, S, T and U, in that order. If $\frac{S}{R} = \frac{1}{2}$, then $\frac{T}{U} =$						
	A. ¼	B. 1⁄2	C. 2	D. 4	E. NOTA	
9. The tenth term of an arithmetic sequence is 20, and the third term is 1. What is the positive difference between the first and second terms of the sequence?						
	21	19	19	7		

A. $\frac{21}{9}$ B. $\frac{19}{7}$ C. $\frac{19}{6}$ D. $\frac{7}{2}$ E. NOTA

- 10. What is the sum of the first 400 terms (first term a_1) of the sequence for which $a_1 = 0$ and $a_n = 4 \cdot a_{n-1}$?
 - A. 4⁴⁰⁰ B. 4(400) C. 4 D. 0 E. NOTA

11. $a_1 = a_2 = 1$ and for n > 2, and $n \in \text{positive integers}$, $a_n = a_{n-1} + a_{n-2}$. Which is equivalent to $a_6 - a_5$?

- A. a_4 B. $a_7 a_5$ C. $a_7 a_6$ D. 1 E. NOTA
- 12. The terms of a geometric sequence are a_1 , a_2 , a_3 and a_4 , in that order. If there is a 10% decrease from a_2 to a_1 (in that order), and $a_3 = 1000$ then which is the value of a_1 ?
 - A. 81 B. 270 C. 810 D. $\frac{100}{81}$ E. NOTA

13. The Smiths dined out last night, and their dinner bill prior to tax was B_1 dollars. With tax, their bill came to B_2 dollars, and with a 15% tip on the B_2 amount, the total came to B_3 dollars. If B_1 , B_2 , and B_3 form a geometric sequence, then what percent of B_1 was the tax? (Answers are percents)

A.
$$\sqrt{15}$$
 B. 5 C. 7.5 D. 15 E. NOTA

14. Of the two geometric means between 2 and -54, find the one which is not evenly divisible by 9.

- A. -6 B. -8 C. -12 D. -14 E. NOTA
- 15. The five arithmetic means of x and y are f, 20, g, 34, and h, and f < 20 < g < 34 < h. Find the value of g.
 - A. 24 B. 26 C. 27 D. 28 E. NOTA

16. If the domain of f is a subset of the set of integers, $f(n) = \begin{cases} (-2)^n & \text{for } n \le 0\\ (2)^n & \text{for } n > 0 \end{cases}$, then the value of $\sum_{n=1}^{2} f(n) = ?$

- 17. The roots of the quadratic function $f(x) = x^2 8x + k$ (for k some positive integer) form an arithmetic sequence with 1. That is, for the roots a and b, the sequence is 1, a, and b. What is the value of k?
 - A. -20 B. 10 C. 15 D. 16 E. NOTA

18. A geometric sequence has four positive terms a_1 , a_2 , a_3 , and a_4 . If $\frac{a_3}{a_1} = 9$ and $a_1 + a_2 = \frac{4}{3}$, then $a_3 = \frac{4}{3}$.

A.
$$\frac{\sqrt{3}}{3}$$
 B. $\frac{2}{3}$ C. 3 D. $3\sqrt{3}$ E. NOTA
19. $\prod_{n=1}^{4} (n+1)$
A. 196 π B. 120 C. 196 D. 14 π E. NOTA

20. For sequences with terms p_n and a_n , $n \in \text{natural numbers}$; $a \in \text{positive integers}$,

$$\sqrt{a_n + \sqrt{a_n + \sqrt{a_n + \sqrt{\dots}}}} = p_n$$
, and $p_n = 3n + 1$. Which describes the term a_n ?
A. $p_n(p_n - 1)$ B. C. $p_n + 30$ D. $(p_n)^2 - p_n - 1$ E. NOTA
21. $\left(\sum_{n=1}^{8} 2^n\right) \div \left(\frac{1}{2}\right) =$
A. $\sum_{n=2}^{9} 2^n$ B. $\sum_{n=2}^{7} 2^n$ C. $\sum_{n=0}^{7} 2^n$ D. $2^n - 2$ E. NOTA

- 22. f(x) = (x-1)(x-2)(x-3)...(x-10) for domain integers, x, such that x > 10. What is the least value of f for this domain?
 - A. 0 B. 40! C. $\frac{11!}{2}$ D. 11! E. NOTA

23. If $\frac{1}{2} + \frac{1}{2\sqrt{3}} + \frac{1}{6} + \frac{1}{6\sqrt{3}} + \dots = \frac{a + \sqrt{a}}{4}$ then which is the value of a? A. 2 B. 3 C. 5 D. 6 E. NOTA

24. The five 5th roots of *i* may be written as $cis\theta_1$, $cis\theta_2$, $cis\theta_3$, $cis\theta_4$ and $cis\theta_5$ for $\theta \in [0, 2\pi]$. If $\theta_1 < \theta_2 < \theta_3 < \theta_4 < \theta_5$ then θ_1 , θ_2 , θ_3 , θ_4 , and θ_5 form an arithmetic sequence. Give the third term θ_3 of that sequence. ($cis\theta$ denotes ($\cos\theta + i\sin\theta$).)

A. $\frac{3\pi}{10}$ B. $\frac{2\pi}{5}$ C. $\frac{3\pi}{4}$ D. $\frac{9\pi}{10}$ E. NOTA

25. If
$$2 \bullet \left(\sum_{n=1}^{5} n\right) = \sum_{m=1}^{2} x^{m}$$
 for some positive value of x , then $x =$
A. 4 B. 5 C. 6 D. 15 E. NOTA

26. A sequence of figures is shown at the right. The first (shaded) is a square of side length 1. Each term after the first term is a rectangle with width (shorter side) 1. The first five terms create a larger square (darker segments show the perimeter) and each subsequent 4 terms join with the preceding terms to create another square. Find the total area of the first 17 figures of this sequence.

E. NOTA

A. 189 B. 164 C. 81 D. 49

27. The sequence $a_n = (64)^{n/(n+1)}$ has first term $64^{\frac{1}{2}}$ for n=1. How many terms of this sequence are integers for n > 1 ?

- A. 1 B. 2 C. 3 D. 4 E. NOTA
- 28. The n^{th} term of a sequence is determined by C(100, n), and the sequence has 100 terms, with first term C (100, 1). What is the sum of the first 99 terms of the sequence? (note: C(a, b) is the number of combinations of *a* objects taken *b* at a time.)
 - A. $2^{100} 2$ B. $2^{99} 1$ C. 2^{98} D. $2^{99} 2$ E. NOTA

30. The function f(x) = [x] defines the greatest integer less than or equal to x. The values of f(-1), f(5/2), $f(-\pi)$, and $f(e^2 + 1)$ form a sequence. Which expression below gives the sum of that sequence?

A.
$$\sum_{n=1}^{4} (-2)^n$$
 B. $\sum_{n=1}^{4} (-2)^{n-1}$ C. $\sum_{n=1}^{4} (-1)^{n+1} (2)^n$ D. $\sum_{n=1}^{4} (-1)^n (2)^{n-1}$ E. NOTA