Question Number	Answer
P.	y = 4x - 2e
1.	1
2.	$\frac{3(2x^2+7)^5}{20} + C$
3.	400
4.	$\frac{5}{6\pi}$
5.	$4x\cos x - 4x^2\sin x$
6.	10
7.	$y' = \frac{2x\cos(x^2 + y^2) + \frac{1}{x}}{\frac{1}{y} - 2y\cos(x^2 + y^2)} \text{ or } \frac{y + 2x^2y\cos(x^2 + y^2)}{x - 2xy^2\cos(x^2 + y^2)}$
	or any other equivalent form
8.	$\frac{\sqrt{3}}{9}$
9	no solution
10.	$\frac{5}{2}$
11.	$\frac{\pi^2 - 24}{48}$ or $\frac{\pi^2}{48} - \frac{1}{2}$
12.	$90 \pm \sqrt{2}$ THROWN OUT

1. The graph is the unit circle and the point is $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. The line normal to the graph here is then y = x, which has a slope of 1.

2. Standard integration, no integration by parts.

3. Small numbers with fifteen factors are of the form p^2q^4 , p and q prime. Enumerating the smallest: $3^2 \cdot 2^4$, $2^2 \cdot 3^4$, $5^2 \cdot 2^4$. The third smallest is 400.

4. Solving for the volume of the container by solids of revolution: $V = \pi \int_{0}^{h} y dy = \frac{\pi h^2}{2}$. Hence the height is 6 when the

volume is 18π , differentiating and solving gives $dh = \frac{5}{6\pi}$.

5. Following the proof for differentiation of a product:

$$\lim_{h \to 0} \frac{f(x+h)g(x+2h) - f(x)g(x)}{h} = \frac{f(x+h)g(x+2h) - f(x)g(x+2h) + f(x)g(x+2h) - f(x)g(x)}{h}$$
$$= \frac{g(x+2h)[f(x+h) - f(x)] + f(x)[g(x+2h) - g(x)]}{h} = \frac{g(x+2h)[f(x+h) - f(x)]}{h} + 2\frac{f(x)[g(x+2h) - g(x)]}{2h}$$

Evaluating the limits gives: f'(x)g(x) + 2f(x)g'(x), which immediately gives: $4x \cos x - 4x^2 \sin x$

6. Solving for surface area in terms of radius gives: $SA = 2r^2\pi + \frac{4000\pi}{r}$. Differentiate and set equal to zero to give r=10.

7. Implicitly differentiating $\ln y - \ln x = \sin(x^2 + y^2)$: $\frac{y'}{y} - \frac{1}{x} = (2x + 2yy')\cos(x^2 + y^2)$

Separating variables gives: $y' = \frac{2x\cos(x^2 + y^2) + \frac{1}{x}}{\frac{1}{y} - 2y\cos(x^2 + y^2)}$.

8. Area is equal to: $\frac{1}{2}(\sin x)(\sin x)(\cos x) = \frac{\sin^2 x \cos x}{2} = \frac{\cos x - \cos^3 x}{2}$ Differentiating and setting to zero gives:

 $\sin x = 3(\sin x)(\cos^2 x) \rightarrow \frac{1}{3} = \cos^2 x$. The maximal area is then $\frac{1}{3\sqrt{3}}$ or $\frac{\sqrt{3}}{9}$. 9. Integrating gives: $[x \ln x - x] - [-1] = 1 \rightarrow x \ln x - x = 0 \rightarrow x = e$.

10. Series is equal to:
$$\left(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots\right) + \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots\right) = \frac{1/3}{1 - 1/3} + \frac{1/2}{(1 - 1/2)^2} = \frac{1}{2} + 2 = \frac{5}{2}$$

11. Differentiating gives: $f'(x) = 3x^2 - 2\sin x \cos x = 3x^2 - \sin(2x)$. So $f'(\frac{\pi}{12}) = \frac{3\pi^2}{144} - \frac{1}{2} = \frac{\pi^2 - 24}{48}$

12. $\sum_{x=0}^{90} \cos(2x) = \sum_{x=0}^{90} \cos^2(x) - \sin^2(x) = \sum_{x=0}^{90} \cos^2(x) - \sum_{x=0}^{90} \sin^2(x)$. Both the sine and cosine series can be summed independently grouping terms as in arithmetic summation:

$$\left[\sin^2(0) + \sin^2(90)\right] + \left[\sin^2(1) + \sin^2(89)\right] + \dots + \sin^2(45) = 45 + \frac{\sqrt{2}}{2}$$

Adding the identical results for sine and cosine gives: $90 + \sqrt{2}$