

1. When expressed in simplest radical form, $(\sqrt[3]{9})(\sqrt[4]{16})(\sqrt[6]{36})$ is $a\sqrt[b]{c}$, where <i>a</i> , <i>b</i> , and <i>c</i> are natural						
numbers. Find the sum of A. 11 B.		23	D. 59	E. NOTA		
2. $f(x)$ and $g(x)$ are linear func graphs of $f(x + 3)$ and $g(x + 3)$		at the point (5, 1).	What is the point of in	tersection of the		
A. (8, 4) C. (2, 1)		(5, 4) unable to be deter	rmined	E. NOTA		
3. Simplify and assume non-z	zero denominators:		$\frac{1}{1 - \frac{1}{1 - \frac{1}{1 - x}}}$			
A. $1 - x$ B. 1	1 C.	<i>x</i> – 1	D1	E. NOTA		
4. If <i>n</i> is a positive integer an	d $i = \sqrt{-1}$, which of the theorem is a second se	he following statem	ents is false?			
A. $i^{4n} = 1$ B.	$i^{n+4} = i^n$ C.	$i^{4n+1} = -i$	D. $i^{4n+2} = -1$	E. NOTA		
5. When solved over {CompletionA. two distinct real rootsC. Two distinct imaginary	B.	ation $x + \sqrt{x - 4} = 6$ exactly one real ro exactly one imagin	oot	E. NOTA		
6. A function <i>f</i> is defined recu $f(n)$ f(n)	-	> 1)				
Find the value of $f(4) + f(5)$).					
A. 18 B. 2	23 C.	25	D. 36	E. NOTA		
7. Which of the following is n where <i>a</i> and <i>b</i> are integers?		root of the equation	n $9x^3 + ax^2 + bx + 1$	8 = 0,		
A. $\frac{1}{9}$ B	-6 C.	$\frac{2}{3}$	D. $\frac{3}{2}$	E. NOTA		
8. The probability that Mark What is the probability tha				nysics is 0.6.		

A. 0.09 B. 0.18 C. 0.9 D. 0.72 E. NOTA

Mu Alph 2006 Nat	a Theta ional Convention			Theta Individual Theta Division
9. If the units dig	git of 2^{2006} is X and the	units digit of 7^{2006} is I	, find the product XY.	
A. 6	B. 14	C. 24	D. 36	E. NOTA
	ies directly as X and inv by 25%, what change ta		Y. If both the value of	of X and the value of Y
A. W increases by 25%C. W decreases by 20%			W decreases by 25%W decreases by 45%	
11. Simplify: 2^{-r}	$\bullet 8^{n-1} \bullet 4^{n+3} \div 16^n$			
A. 8	B. 2^{3n}	C. 4	D. 4 ⁿ	E. NOTA
	ind the value of k for w taining (0, 0) and (b, 1)		$g\left(\frac{1}{a}, k\right)$ and $\left(\frac{1}{b}, \frac{b}{a}\right)$	is perpendicular
A. $\frac{b}{2a}$	B. $\frac{2b}{a}$	C. $\frac{2b}{a}+1$	D. 1	E. NOTA
13. In $\triangle ABC$, AB	B = 12, BC = 16, AC = 14	4, point <i>D</i> is on \overline{AC} , a	nd \overline{BD} bisects $\angle B$.	Find AD.
A. 8	B. 7	C. 6	D. 4	E. NOTA
4. If $(3 \log_p x)$	$(\log_4 p) = 6 (p > 0, p = 6)$	≠ 1, x > 0), find the va	lue of x.	
A. 4	B. 16	C. 4p	D. 2	E. NOTA
15. Find the value of $\frac{12}{x-1} - \frac{8}{x}$	e of $A + B + C$, if A i = 2 and C is the produ	s the positive root of $\frac{1}{2}$	$x^{3} + x^{2} - 9x - 9 = 0$, B $x^{2} - 1)^{2} - 5(x^{2} - 1) + 0$	is the sum of the roots $4 = 0$.
A. 5	B. 10	C. 12	D. 16	E. NOTA
	members, consisting of e-president, secretary – the a man?			

- president, vice president, president, president must be a man?
- A. 2184 B. 672 C. 576 D. 336 E. NOTA

17. If the roots of $x^2 + bx + c = 0$ are the squares of the roots of $x^2 + 4x + 5 = 0$, find the sum b + c.

A. 11 B. 19 C. 31 E. NOTA D. 41

18. The perpendicular distance between the graphs of the lines y = -x + 10 and y = -x + 7 is

D. $\frac{7\sqrt{2}}{2}$ A. $\frac{3\sqrt{2}}{2}$ B. 3 C. 3.2 E. NOTA 19. Find the numerical value of 2^x , where $x = \frac{{}_9P_2}{\begin{vmatrix} 4 & 2 \\ 10 & 5 \end{vmatrix}} + {}_4C_2 + 3!$. C. 32 A. 4 B. 6 D. 64 E. NOTA 20. Find the sum of all distinct real values of x that satisfy $(x^2 - 9x + 19)^{(x^2 + 2x - 3)} = 1$. C. 9 A. 16 B. 12 D. 7 E. NOTA 21. Given 3x + 2yi = -9i(6 - 7i), where x and y are real numbers and $i = \sqrt{-1}$. Find the sum x + y.

A. -117 B. -48 C. -6 D. 13.5 E. NOTA

22. An equation of the parabola with directrix x = -1 and focus (3, 2) is

- A. $y^2 8x 4y + 12 = 0$ B. $y^2 8x + 1 = 0$ C. $x^2 2x 8y + 17 = 0$ D. $x^2 4x + 8y + 12 = 0$ E. NOTA
- 23. The first and second terms of a geometric sequence are q^{-4} and q^{p} , respectively, (q > 0). If q^{52} is the eighth term of the sequence, find the value of p.
 - A. 8 B. $\frac{24}{7}$ C. 4 D. 12 E. NOTA
- 24. The quadratic equation $kx^2 + 8x + 4 = 1$ will have two imaginary roots if
 - A. k > 4 B. $k > \frac{16}{3}$ C. $k > -4, k \neq 0$ D. $k < \frac{16}{3}, k \neq 0$ E. NOTA

25. Which of the following are true of the function $f(x) = \ln x$?

- i) The domain of f is $\{x: x > 0, x \neq 1\}$
- ii) f is a strictly decreasing function.
- iii) $f^{-1}(x) = e^x$
- iv) The range of f is {*Real Numbers*}
- v) f is a one to one function.

A. i, iii, iv only B. iii, iv only C. iii, iv, v only D. i, ii, iii, iv, v E. NOTA

- 26. The ratio of an interior angle to an exterior angle of a certain regular polygon is 5 : 1. Find the sum of the interior angles of the polygon.
 - A. 120 B. 360 C. 1650 D. 1800 E. NOTA
- 27. Find the sum of the y-coordinates of the foci of the graph of $25x^2 + 9y^2 50x + 36y 164 = 0$.
 - A. 1 B. -4 C. -2 D. 2 E. NOTA

28. If
$$\sum_{x=1}^{3} (ax + b) = 15$$
 and $\sum_{x=2}^{4} (ax + b) = 21$, find the sum $a + b$.
A. 1 B. 36 C. 3 D. 18 E. NOTA

- 29. Given $f(x) = x^4 + 5x^2 + 2x 11$. According to DesCartes' Rule of Signs, if A is the maximum number of positive real zeros possible for f(x) and B is the maximum number of negative real zeros possible for f(x), find A B.
 - A. -2 B. -1 C. 0 D. 1 E. NOTA
- 30. Consider the graph of $f(x) = \frac{x^2 2x 15}{x^2 + x 6}$. How many of the following statements are true?
 - i) The graph has two vertical asymptotes.
 - ii) The graph has no points in quadrant III.
 - iii) The graph has a horizontal asymptote with equation y = 0.
 - iv) The graph has one real zero.
 - A. 0 B. 1 C. 2 D. 3 E. NOTA