

1. B or E			
2. C			
3. C			
4. C			
5. D			
••			
6 D			
7 B			
9 D			
0. D			
ソ. E 10 D			
10. B			
4.4 A			
11. A			
12. C			
13. C			
14. D			
15. A			
16. B			
17. E			
18. D			
19. A			
20. D			
21. A			
22 D			
23 C			
29. C 24 D			
24. D 25. B			
2 J . D			
26 D			
20. D 27 A			
2/. A			
28. B			
29. E			
30. B			

SOLUTIONS

1. **(B)** The other leg of the triangle is 48, and the circumference of the semicircle is $\pi r = \left(\frac{22}{7}\right)(7) = 22$.

The sum is 22 + 48 + 50 = 120.

- 2. (C) The wheel's circumference is $2\pi r = 2\pi \left(\frac{4}{\pi}\right) = 8 = 2^3$. $\frac{2^5}{2^3} = 2^2 = 4$.
- 3. (C) The only way to score 10 points is to score 3+7, 7+3, or 5+5. The sum of the respective probabilities is $\left(\frac{7}{16}\right)\left(\frac{3}{16}\right) + \left(\frac{3}{16}\right)\left(\frac{7}{16}\right) + \left(\frac{5}{16}\right)\left(\frac{5}{16}\right) = \frac{67}{256}$
- 4. (C) By definition.
- 5. (D) The square's perimeter is $4\frac{2r}{\sqrt{2}} = 4r\sqrt{2} \approx 5.6r$. The hexagon's perimeter is 6r. The circle's circumference is $2\pi r \approx 6.3r$.
- 6. **(D)** An interior angle of a regular dodecagon (which *is* the supplement of an exterior angle) is $\frac{180^{\circ}(12-2)}{12} = 150^{\circ}.$
- 7. (B) The woman ends 2 miles east and 6 miles south of her starting point, a distance of $\sqrt{2^2 + 6^2} = \sqrt{40}$. Her total walkage was 10, and $\frac{40}{100} = \frac{2}{5}$.

8. (D) The semiperimeter is 5, and by Heron's formula, the area is $\sqrt{5(2)(2)(1)} = \sqrt{20} = 2\sqrt{5}$.

9. (E) If cylinder A's volume $V = \pi r^2 h$ then for cylinder B, having height b, $\frac{V}{2} = \pi \left(\frac{r}{5}\right)^2 b$. So

$$\pi r^2 h = 2\pi \frac{r^2}{25} b \rightarrow h = \frac{2}{25} b \rightarrow b = 12.5h.$$

- 10. (B) The only constraint that does not indicate that at least one (and therefore all) of the angles are right.
- 11. (A) $\cos R = \frac{RT}{GR}$. Solving $\frac{1}{3} = \frac{x}{6}$, x = 2.
- 12. (C) Note that the small triangle atop the square is equilateral (due to the square's parallel sides.) Its

height is
$$\frac{x\sqrt{3}}{2}$$
. Solving, $x + \frac{x\sqrt{3}}{2} = h \rightarrow x\left(\frac{2+\sqrt{3}}{2}\right) = h \rightarrow \frac{h}{x} = \frac{2+\sqrt{3}}{2}$.

- 13. (C) By Euler's formula for solids, V + F = E + 2.
- 14. (**D**) Ask the universe.
- 15. (A) According to triangle inequality, each side must be less than the sum of the other two. x > 0 from the given. $3x < 2y + (x + y) \rightarrow x < \frac{3}{2}y$. $2y < 3x + (x + y) \rightarrow y < 4x \rightarrow y < 4x + |y|$ (Adding any nonnegative number to the "greater" side of an inequality maintains its integrity.)

$$(x+y) < 3x+2y \rightarrow x > -\frac{y}{2}.$$

16. (B) Ignore the distracting triangle. Segments tangent to a circle from the same point are congruent.
17. (E) H = 6(6-3)/2 = 9, so one diagonal is 18. A side of a rhombus forms a right triangle with each half-diagonal. Solving, the other diagonal is 24. The area is 1/2(18)(24) = 216 = 24H
18. (D) The area of the sector is π/3, and √3/4 of that area is occupied by the triangle. Subtract to get the segment's area.
19. (A) The legs measure 3√5 and 6√5. 3√5 ⋅ 6√5 = 15h. So, h = 6..
20. (D) Solve 1/2(4/3)πr³ = 3πr².
21. (A)
22. (D) The legs of the trapezoid measure 8, and AD is 8 more than BC. AD = 100-24/2 = 38.
23. (C) 3x+90+3x+90/3 = 540, and x=114. This is larger than 3(114)/4 = 85.5.
24. (D) The cone-shaped water is similar to the cup. If it has 1/2 the height, then it has (1/2)³ = 1/8 of the

volume.

25. (B) The contrapositive of a true statement is true.

26. (D)
$$\sqrt{2^2 + 2^2 + 2^2} = 2\sqrt{3}$$

27. (A) 2(4x+2x+8) = 30, so $x = \frac{7}{6}$. The surface area is $\left(\frac{7}{6}\right)(2)(4) = \frac{28}{3}$.

28. (B) The woman's shadow is 18 feet long. The shadow is 3 times as long as the object today.29. (E)

30. (B) The area of the kite is half the product of its diagonals. $\frac{1}{2}(2r)(2r+8) = 24$, so the radius of the circle is 2, $KI = 2\sqrt{2}$ (isosceles right triangle) and $KE = \sqrt{2^2 + 10^2} = 2\sqrt{26}$. The product is $8\sqrt{13}$.