MU Gemini Soutions—Nationals 2008

1. [C] L'Hopital's Rule cannot be applied here, because $\frac{1}{0}$ is not an indeterminate form. This is just the

definition of the derivative. Change the y's to h's. $\lim_{h \to 0} \frac{\cos\left(\frac{3\pi}{2} + h\right) - \cos\left(\frac{3\pi}{2}\right)}{h} = f'\left(\frac{3\pi}{2}\right) \text{ when } f(x) = \cos(x), \text{ so the value is } f'\left(\frac{3\pi}{2}\right) = -\sin\left(\frac{3\pi}{2}\right) = 1.$

- 2. [E] Separating, $-\frac{1}{3y}dy = dt$. Integrating, $-\frac{1}{3}\ln|y| = t + C$. Substituting the initial condition, $-\frac{1}{3}(\ln 1) = 0 + C$, and C = 0. So the final equation is $-\frac{1}{3}\ln|y| = t$. When $y = \frac{1}{3}$, $t = -\frac{1}{3}\ln\left(\frac{1}{3}\right) = \left(-\frac{1}{3}\right)(-\ln 3) = \frac{\ln 3}{3}$.
- 3. **[D]** $h(x) = x^{-\frac{4}{5}}$, and by the power rule, $h'(x) = -\frac{4}{5}x^{-\frac{9}{5}}$. a + n = -0.8 + -1.8 = -2.6.
- 4. [A] The slopes are $\pm \frac{\sqrt{20}}{\sqrt{5}} = \pm 2$, and the lines pass through the center, (-1,3). Solving y-3=2(x+1), y=2x+5, so a=5. The foci are $\sqrt{20+5}=5$ units from the center, and the transverse axis is vertical. So the foci are (-1,8) and (-1,-2), and b=6.
- 5. **[D]** $f(x) = \sec x$, so $f'(x) = \sec x \tan x$. By the product rule $f''(x) = \sec(x)\sec^2(x) + \tan(x)(\sec x \tan x)$, so $W = f''\left(\frac{\pi}{4}\right) = \sec^3\left(\frac{\pi}{4}\right) + \sec\left(\frac{\pi}{4}\right)\tan^2\left(\frac{\pi}{4}\right) = 2\sqrt{2} + \sqrt{2} = 3\sqrt{2}$, and $W^2 = 18$.
- 6. [A] Let $u = x^4$, so $du = 4x^3 dx$. Substituting, $\int_0^1 x^3 e^{x^4} dx = \frac{1}{4} \int_0^1 e^{x^4} (4x^3 dx) = \frac{1}{4} \int_{0^4}^{1^4} e^u du$. Evaluating, $\frac{1}{4} [e^u]_0^1 = \frac{e-1}{4}$. 7. [D] Since the area of a regular hexagon with side x is $1.5x^2\sqrt{3}$, solve to find that x = 6. The portion of the large circle available is $\frac{240}{360} (\pi 12^2) = 96\pi$. Then each of the two small circles has $\frac{60}{360} (\pi 6^2) = 6\pi$ available. $96\pi + 2(6\pi) = 108\pi$.
- 8. **[D]** The velocity is increasing when the acceleration is positive. $v(t) = s'(t) = t^2 8t + 15$, and a(t) = v'(t) = 2x 8. Solving 2t 8 > 0, find that t > 4.

MU Gemini Soutions—Nationals 2008—p 2

9. [D] The only possible values (from carrying ones) for S, A, and M are 9, 0, and 1. Then, from the last column, the only possible value of Y is 2. Digits remaining: {3,4,5,6,7,8}

Note now that F + T gives two different values in the two columns. That means that a one is carried into one of these columns. Because the column to the right of the first F + T has a 1, and the 9 and 0 are already used, that means that the second F + T column must have the one carried into it. Not also that because F + T carries a 1 the first time, it must do the same the second time. Digits remaining: {3,4,5,6,7,8}

Because the 0, 1, and 2 are used, the only possible combinations for *F* and *T* are (5,8), (6,7), (6,8), and (7,8). However, (5,8) and (6,7) are really not possible, because when E=3, there is no way the T + E column can work. Let's check the other possibilities.

Checking F = 7, T = 8 – in this case, a contradiction occurs since *R* would be 8, which is already used.

Checking $F = 8, T = 7$ – again, a contradiction occurs since <i>R</i> would be 8, which is already used.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 9 1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-
Checking $(6,8)$ – in this case, $E=4$, and T must be 8, and then $C=3$. This is our answer! E=6, $L=5$, $T=8$, and the sum is 19.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 9
1 = 0, 1 = 0, 1 = 0, und the sum is 19.	1 0 4 7 5 3	1

10. [B] Plug in 0 for y to find the x-intercepts. Solving $x^2 - 4x = 12$, the positive x-intercept is 6. Differentiating with respect to y, 2x + 2yy' - 4 - 6y' = 0. Substituting (6,0), 12 - 4 - 6y' = 0, and $y' = \frac{4}{3}$.

- 11. [C] The probability that they are different colors is 1 (prob of same colors). The probability of both being green is $\left(\frac{3}{9}\right)\left(\frac{2}{8}\right) = \frac{1}{12}$. The probability of both blue is $\left(\frac{2}{9}\right)\left(\frac{1}{8}\right) = \frac{1}{36}$. The probability of both red is $\left(\frac{4}{9}\right)\left(\frac{3}{8}\right) = \frac{1}{6}$. $\frac{1}{12} + \frac{1}{36} + \frac{1}{6} = \frac{5}{18}$, and $1 \frac{5}{18} = \frac{13}{18} = \frac{52}{72}$.
- **12. [A]** Use the rational root theorem with synthetic division to find that the only (repeating) roots are 2 and -1.

1	1				1	
		F	Ι	F	Т	2
+	9	Т	1	Т	Ε	9
1	0	Ε	R	Ι	С	1
1	1		1	1	1	
		F	Ι	F	Т	2
+	9	Т	1	Т	Ε	9
1	0	Ε	R	Ι	С	1

1 1 1 1 1

MU Gemini Soutions—Nationals 2008—p 3

13. [A] Consider the table.

x	2	3	4	5	6	7	8	9	10	11	12
f(x)	3	6	12	24	17	29	22	34	27	39	32

Note that for x > 5, we alternate between the series 17, 22, 27... (for the even terms) and 29, 34, 39, ... (for the odd terms).

Simply note that all values where x is divisible by 4 will end in a 2. Or you can go further and see that if x is even, every increase in 2 changes f(x) by five, and model the situation for even x > 4 as

- $y-17 = \frac{5}{2}(x-6)$, and find that f(200) = 502.
- 14. [D] Choice A only works if the original quantity is negative. Choice B will not always work (e.g. if |f(x)| < 1 for all values on the interval.) Choice C will not work if the original quantity is already nonnegative. Choice D will work, because all of the "negative area" (which must exist by the given conditions) will be treated as positive.
- 15. [D] The formula for the volume of a frustum is $V = \frac{\pi h}{3} (R^2 + rR + r^2)$. *R* is a constant, 5. By similar cones (the "ghost cone" atop the frustum and the original cone), the relationship between *r* and *h* can be determined. $\frac{10-h}{10} = \frac{r}{5}$, and then $r = \frac{50-5h}{10} = 5 \frac{h}{2}$. Substituting this into the volume formula, $V(h) = \frac{\pi h}{3} \left(25 + 5 \left(5 \frac{h}{2} \right) + \left(5 \frac{h}{2} \right)^2 \right)$. Simplifying, $V(h) = \frac{\pi h}{3} \left(\frac{h^2}{4} - \frac{15h}{2} + 75 \right) = \frac{\pi}{3} \left(\frac{h^3}{4} - \frac{15h^2}{2} + 75h \right)$. Differentiate with respect to time. $\frac{dV}{dt} = \frac{\pi}{3} \left(\frac{3h^2}{4} - 15h + 75 \right) \frac{dh}{dt}$. Evaluating at the requested instant, $\frac{dV}{dt} = \frac{\pi}{3} \left(\frac{3(3)^2}{4} - 15(3) + 75 \right) (2) = \frac{49\pi}{2}$.

$$\int_{0}^{1} \frac{4x^{3} - 6x}{x^{4} - 3x^{2} - 4} dx = \int_{0^{4} - 3(0)^{2} - 4}^{1 - 5(1)^{-4}} \frac{1}{u} du = \int_{-4}^{-6} \frac{1}{u} du = \left[\ln \left| u \right| \right]_{-4}^{-6} = \ln 6 - \ln 4 = \ln \frac{6}{4} = \ln \frac{3}{2}.$$

- 17. [A] The derivative must change signs from negative to positive to guarantee a local maximum on the interval. Since *f* is twice-differentiable, *f* ' is continuous, and since the function returns to its original value at x = 7, and negative value of f'(x), this guarantees that the derivative will undergo the appropriate sign change. Solving -(4-k)-1<0, find that k < 3.
- **18.** [D] The number of regions is $\frac{n(n+1)}{2} + 1$, so $\frac{11(12)}{2} + 1 = 67$.
- **19.** [C] $g'(3) = \frac{1}{f'(2)} = 2.5$ **20.** [C] Since $h(x) = (f(x))^{-2}$, $h'(x) = -2(f(x))^{-3} f'(x)$. h'(1) = (-2)(8)(0.25) = -4.

MU Gemini Soutions—Nationals 2008—p 4

- **21. [C]** Note that f(5-x) = f(-(x-5)), which is the same as the graph of f(x) being reflected about the *y*-axis, and then shifted right 5 units. Reflecting just the portion of the graph of f(x) on the given interval and then translating it yields the same graph, but with a vertical reflection about the line x = 2.5. The graph's position relative to the *x*-axis remains unchanged, so the value is still 6.
- **22. [C]** The Fundamental Theorem of Calculus cannot be applied here, because f'(x) is not a continuous function. Since f(x) is continuous, but not differentiable, at x = 2, then
 - $f'(x) = \begin{cases} 2, & \text{if } x < 2\\ 0, & \text{if } x > 2 \end{cases}$ Very easy to integrate these with geometry and the graphs. Since there is a

jump discontinuity at x=2,
$$\int_{0}^{3} f'(x) dx = \int_{0}^{2} f'(x) dx + \int_{2}^{3} f'(x) dx = 4 + 0 = 4$$
.

23. [B] $\sqrt{11-6\sqrt{2}} = 3-1\sqrt{2}$.

24. [B] Indeterminate form, so Use L'Hopital's Rule. $\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} = \lim_{x \to 0} \frac{\sin x}{x \cos x + \sin x} = \frac{0}{0}$. Still indeterminate, so use the rule again. $\lim_{x \to 0} \frac{\cos x}{(-x \sin x + \cos x) + \cos x} = \frac{1}{2}$.

25. [C] Substituting, $x = y^2$, which is a parabola.

26. [A] The graphs intersect at (0,0) and (1,1). Integrating, $\int_{0}^{1} \left(x - x^{2}\right) dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$

- **27. [B]** There is one good combination out of ${}_{5}C_{2} = \frac{5!}{2!3!} = 10$ possible combinations.
- **28.** [C] Setting the derivative equal to the average rate of change, 2x-3=1, and solve to find x = 2. **29.** [C] $f'(x) = 3x^2$, so lines normal to the graph have slope $\frac{-1}{3x^2}$. The slope of the line in question is
 - $-\frac{1}{3}$, which occurs (on the positive side) at x = 1. So we wat the line to pass through the point on the

Since the question asks for the rate of decrease, the negative is unnecessary.