
Solutions Mu Area and Volume Nationals 2008 
 

1. First find the intersections between y = x3
+ x + 8  and y = 3x2

+ 7x  or x3
+ x + 8 = 3x2

+ 7x  which solves 

(x + 2)(x − 1)(x − 4) = 0  so Area = 

(x
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81
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 C. 

2. this needs the circumradius, which for a right triangle is half the hypotenuse.  Area = π
5
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
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=
25π
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 C. 

3. a function for the area of this rectangle in terms of x is ( ) ( )( )2 2 3( ) 2 4 4 4 16A x x x x x x= ⋅ − − − = − + . To 

maximize, differentiate and set to zero: 2'( ) 12 16 0A x x= − + = . 
4

3
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4. Area 

2 2 2
1 1 1 1 1

( )
2 2 2 2 2 2

d d
A d π π π

−     
= − −     

     
, where d is the diameter of the smallest circle; max 
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5. This shape is a rhombus, so Area = .5(d1 · d2) = 48  D. 

6. This tetrahedron has edges length 3 2  so the Volume is V =
3 2( )

3

2

12
= 9  B. 

7. V =
π

x
2

dx
1

∞

∫ = lim
h→∞

π

x
2
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h

∫ = 0 + π = π  B. 

8.  by definition 13  C. 

9. 
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( )
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π π π
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10. 20-21-29 is the triangle 29  D. 

11. 4πr
2

= 400π  then r = 10  so V =
4π 10( )

3

3
=

4000π

3
 A. 

12.  First the ellipse area: A = a ⋅ b( )π  then torus median radius or distance from (5, 8) to          3x + 4y = -7.  

d =
aX + bY + C

a2
+ b2

=
3(5) + 4(8) − 7

32
+ 42

= 8 V = 2π AR = 2π 4 ⋅ 2π( )⋅ 8 = 128π 2  E.  

13. 
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⋅ 40 + 4 ⋅ 45 + 2 ⋅ 50 + 4 ⋅ 45 + 35( )=
10700

3
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14. Since there are 4 pedals in this rose, integrate on interval −
π

4
,
π

4
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so A =
1
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= 2π B. 

15. The intersection points are (0,1), (4, 1), (2, 3). Area = 
1

2
⋅

0 1 1

4 1 1

1 4 1

= 6  B. 



16. V = π 4y( )
2

dy
0

1

∫ = 4π ydy
0

1

∫ = 2π  C. 

17. solve for x: x
2

+
x

2 3

4
= 3000  ( )

30
20 4 3

13
x = −  E. 

18. let x = CB, and θ = angle I in radians. and so A =
1

2
⋅ IC ⋅ BC =

1

2
⋅ 6 2 ⋅ x  but x = 6 2 ⋅ tan(θ ) so 

A = 36 tan(θ ) . So A '
π
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⋅1 = 144 A. 

19. π ⋅ r ⋅ l = 575π  and π ⋅ r
2

= 529π  so r = 23 and l = 25. Thus h = 252
− 232

= 4 6  so 

A =
4 6 ⋅π ⋅ 232

3
=

2116π 6

3
 D. 

20. C – A = (-4, -1, -1) B – A = (1, -7, 1) So Area =

i j k
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2
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= 914  B. 

21. ( )
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 E. 

22. π
2x

x
2

+ 4
dx = ln x
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 A. 

23. f (x) = sin(t)dt
c

x

∫  so f '(x) = sin(x)  this means that f(x) is maximized at x = kπ  whenever  k ∈Z . This 

means that the maximum value of f(x) depends on c. Hence Not enough information E. 

24. Radius of sphere is easily found to be 3. Let R = radius of Cone, h = height of cone. Similar triangles 

shows
R

h
=

3

(h − 3)2
− 32

, so solve that for R, and plug into cone volume formula: 
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Differentiate, get h = 12, plug into first equation and get 3 2R = . Finally, cone volume is 72π C. 

25. 3-4-5, 5-12-13, perimeter sum = 12 + 30 = 42  B. 

26. first find the height of the pyramid 
3 3 48 9
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27. Area =
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= 8  B. 

28. y =
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x
→ x =
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y
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30.  The trapezoid has to have bases length 3 and 6, with height 4.  The resulting area is 18  D. 


