For all questions, choice E) NOTA denotes None Of The Above are correct.

1) Evaluate:
$$\lim_{x \to \infty} \frac{9x^3 - 3x^2 + 7x - 2007}{3x^3 + 6x + 2007}$$

A) -1 B) 0 C) 1 D) 3 E) NOTA

2) Given:
$$f(x) = 9x^2$$
 Evaluate: $\lim_{t \to 0} \frac{f(t+1) - f(1)}{t}$
A) 0 B) 9 C) 18 D) 27 E) NOTA

3) Find the second derivative of
$$y = \frac{e^{x^2}}{2x}$$
 with respect to $x; x \neq 0$.
A) $y'' = \frac{e^{x^2}(2x^2+1)}{2x^3}$ B) $y'' = \frac{e^{x^2}(2x^2-1)}{2x^3}$
C) $y'' = \frac{e^{x^2}(x^4-2x^2+1)}{x^3}$ D) $y'' = \frac{e^{x^2}(2x^4-x^2+1)}{x^3}$ E) NOTA

4) A right triangle is constructed in the Cartesian plane with vertices *A*, *B*, *C*. *A* is the origin (0,0), *B* is located in the first quadrant on the graph
$$y = 2x - x^2$$
, and *C* is a point on the *x*-axis with the same *x*-coordinate as *B*. Angle *ACB* is a right angle. Find the area of the triangle that has maximum area.
A) $\frac{16}{27}$ B) $\frac{4}{3}$ C) $\frac{32}{27}$ D) $\frac{8}{3}$
E) NOTA

5) Let
$$h(x) = \sqrt{x + \sqrt{x + \sqrt{x + \dots}}}$$
, $h(x) \ge 0$ Find $h'(2)$
A) $\frac{1}{4}$ B) $\frac{1}{3}$ C) $\frac{1}{2}$ D) $\frac{3}{4}$ E) NOTA

6) Let
$$h(x) = \begin{cases} 9 - x^2, & x < 1 \\ a & x = 1 \\ x + 7 & x > 1 \end{cases}$$

Which of the following describes the choice for the real number *a* so that $\lim h(x)$ exists?

- A) *a* must be equal to 8 for the limit to exist.
- B) There is no choice for *a* that will make the limit exist.
- C) a must be a positive real number for the limit to exist.
- D) *a* can be any real number for the limit to exist.
- E) NOTA

National	MA O	2008
----------	------	------

Mu Limits and Derivatives

- 7) Evaluate $\frac{dy}{dx}$ of the curve $4x^3 x^2y^2 + 2y^2 = 0$ at the point (-1,2). A) $-\frac{5}{2}$ B) 0 C) 5 D) 8 E) NOTA
- 8) Over the domain (1,4) the function $y = x^3 2x^2 + x 1$ has which of the following properties? I) Concave up II) Concave down III) Increasing IV) Decreasing A) I only B) IV only C) I & III only D) II & III only E) NOTA
- 9) Given that the limit $\lim_{n\to\infty} a^n n^a$ converges to a finite value for some value of *a*, how many of the following CANNOT be equal to *a*?

I) –2	II) –1	III) $-\frac{1}{2}$	IV) $\frac{1}{2}$	V) 1	VI) 2
A) 1	B) 2	C) 3	D) 4	E) NOTA	

10) Find the minimum distance from the curve $x = y^2 + 3$ to the point (2,-5) A) 2 B) $2\sqrt{5}$ C) $\sqrt{34}$ D) $2\sqrt{10}$ E) NOTA

11) The volume of a sphere is increasing at a constant rate of 4π cubic meters per minute. Find the rate of change of the surface area of the sphere, in square meters per minute, when the radius is 2 meters long. A) 2π B) 4π C) 8π D) 16π E) NOTA

- 12) Evaluate: $\lim_{n \to \infty} \left(1 \frac{1}{n}\right)^{2n-3}$. A) $e^{-2} - 3$ B) e^{-2} C) $e^2 - 3$ D) e^2 E) NOTA
- 13) Find the maximum value of the function $h(x) = x^{1/x}$ for x > 0. A) 1 B) $\sqrt{2}$ C) $\sqrt[3]{3}$ D) ∞ E) NOTA

14) Let *n* be a positive integer. In terms of *n* find the coefficient of $\frac{d^n}{dx^n} [x^{n!}]$.

A)
$$\frac{(n!)!}{n!((n-1)!)!}$$
 B) $\frac{(n!)!}{(n!-n-1)!}$ C) $\frac{(n!)!}{(n!-n)!}$ D) $\frac{(n!)!}{(n!)!-(n-1)!}$
E) NOTA

National MA @ 2008

15) $\lim_{x \to 3} \left(\frac{x}{3} + \pi - 1 \right) = \pi$. The $\varepsilon - \delta$ definition of the limit requires that for each $\varepsilon > 0$, there must exist a $\delta > 0$ for the limit to exist. Which of the following is the largest possible choice for δ to satisfy the definition when $\varepsilon = 0.3$? A) $\frac{0.3}{\pi}$ B) 0.1 C) 0.3 D) 0.9 E) NOTA

16) Find the slope of the polar graph
$$r = 1 - \cos(2\theta)$$
 when $\theta = \frac{\pi}{3}$.
A) $-3\sqrt{3}$ B) $\frac{\sqrt{3}}{5}$ C) $\frac{3\sqrt{3}}{5}$ D) $\sqrt{3}$ E) NOTA

17) Let g(x) be a continuous and differentiable function defined for all real numbers. The table shows the value of g(x) and its derivative g'(x) for certain values of x.

x	-2	-1	0	1	2	3
g(x)	-6	-2	0	2	0	-2
g'(x)	2	1	0	0	1	2

Which of the following MUST be true regarding the function g(x)?

I) g(x) is strictly increasing.

II) g(x) has a local minimum at x = 1.

III) g(x) has a critical point at x = 0.

IV) g(x) is concave up on the interval (1,3).

- A) I only B) III only C) II & III only D) I, III, & IV only E) NOTA
- 18) Evaluate: $\lim_{n \to \infty} \frac{1}{n} \left[e^{1/n} + e^{2/n} + e^{3/n} + ... + e^{n/n} \right]$ A) e - 1B e C) e + 1 D) Does not exist E) NOTA

19) Given a continuous and differentiable function, f, with f(0) = 1, f'(0) = 0, f''(0) = -1, and $g(x) = (1 + f(x))^2$. Calculate g''(0). A) -4 B) -2 C) 0 D) 2 E) NOTA

20) Given
$$F(x) = \int_{0}^{x} \sin(t^2) dt$$
. Over which interval is $F(x)$ NOT concave down?
A) $\left(-\sqrt{\frac{\pi}{2}}, -\sqrt{\frac{\pi}{4}}\right)$ B) $\left(-\sqrt{\frac{\pi}{4}}, 0\right)$ C) $\left(\sqrt{\frac{\pi}{4}}, \sqrt{\frac{\pi}{2}}\right)$ D) $\left(\sqrt{\frac{\pi}{2}}, \sqrt{\frac{3\pi}{4}}\right)$
E) NOTA

National MA @ 2008

Mu Limits and Derivatives

27) If $\lim_{x\to\infty} \sqrt{Ax^2 + 12x} - Bx = 3$, find A + B, given A, B > 0. A) 4 B) 6 C) 12 D) Does not exist E) NOTA

28) Given
$$f(x) = x^3 + x + 1$$
 and $g(x) = f^{-1}(x)$. Find $g'(3)$.
A) $\frac{1}{28}$ B) $\frac{1}{4}$ C) 4 D) 28 E) NOTA

29) Which of the following functions are differentiable at every value of *x* on the domain of all real numbers?

I) $y = x \cdot |x|$ II) $y = (x-1) \cdot |x|$ III) $y = |x-1|^3$ IV) $y = x^3 \cdot |x|$ A) II onlyB) I & IV onlyC) I, III & IV onlyD) All are differentiableE) NOTA

30) Evaluate:
$$\lim_{x \to 0} \frac{x \sin(x)}{e^{x^2} - 1}$$

A) -1 B) 0 C) $\frac{1}{2}$ D) 1 E) NOTA