For all of the questions on this test, NOTA should be interpreted as "None Of The Above Answers is Correct."

- 1. For three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} , if $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 24$, what does $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ equal?
 - A. 24

- C. $\frac{1}{24}$ D. $-\frac{1}{24}$ E. NOTA
- 2. Given that $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & -1 \end{bmatrix}$, what is the probability that an entry chosen at random in A^{-1} is less than 0? A. $\frac{2}{3}$ B. $\frac{4}{9}$ C. $\frac{5}{9}$ D. 1 E. NOTA

- 3. Find $\begin{vmatrix} 3 & 0 & 0 & 0 & 0 \\ 10 & -5 & 0 & 0 & 0 \\ 14 & -2 & 8 & 0 & 0 \\ -7 & 3 & 4 & 1 & 0 \\ 3 & 1 & 0 & 1 & 2 \end{vmatrix}$
 - A. 150
- B. -180
- C. 240
- D. 0
- E. NOTA
- 4. The graph of a function $f(x) = a + bx + cx^2$ passes through the points (1, 3), (2, 2), and (-1, -1) for some constants a, b, and c such that $abc \neq 0$. Find a+b-c.
 - A. 3
- B. 5
- C. 4
- D. 0
- E. NOTA
- 5. Given that $det(B) = \begin{vmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24} \\ B_{31} & B_{32} & B_{33} & B_{34} \\ B_{41} & B_{42} & B_{43} & B_{44} \end{vmatrix} = 81$, what is $\begin{vmatrix} B_{31} & B_{32} & B_{33} & B_{34} \\ 3B_{21} & 3B_{22} & 3B_{23} & 3B_{24} \\ B_{11} & B_{12} & B_{13} & B_{14} \\ B_{41} + 2B_{21} & B_{42} + 2B_{22} & B_{43} + 2B_{23} & B_{44} + 2B_{24} \end{vmatrix}$?
 - A. 81
- B. $\frac{-243}{2}$ C. -243 D. 486 E. NOTA

- 6. For two vectors **a** and **b**, $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a} \times \mathbf{b}\| = 1$. Given that the smaller angle between them is θ degrees, find the sum of the digits of θ .
 - A. 0
- B. 3
- C. 6
- D. 9
- E. NOTA

7. What is the volume of the tetrahedron with vertices P = (0, 0, 0), Q = (0, 0, 2), R = (1, 2, 0), and $S = (3, -1, \frac{1}{2})$?

- A. 1

- B. $\frac{11}{6}$ C. $\frac{5}{3}$ D. $\frac{7}{3}$ E. NOTA

8.
$$A = \begin{bmatrix} 1 & 0 & 3\pi/4 \\ \pi/2 & 2 & -1 \\ -2 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} \pi & 2 & 4 \\ 0 & 1 & 6 \\ 0 & \pi/4 & -1 \end{bmatrix}$. What is $\sin[C_{13}]$, where $C = 3A + B - AB$?

- A. 0
- B. $\frac{1}{2}$ C. $\frac{\sqrt{3}}{2}$
- D. 1
- E. NOTA

9. Which of the given matrices is a rotation dilation?

A.
$$\begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$$
 B. $\begin{bmatrix} 1 & -\frac{\sqrt{3}}{2} \\ 0 & 1 \end{bmatrix}$ C. $\begin{bmatrix} \frac{9}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{16}{25} \end{bmatrix}$ D. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ E. NOTA

10. Of the following choices, choose all that are invertible transformations.

- I. Rotations
- II. Shears
- III. Projections
- IV. Reflections

A. I only B. I and IV only C. I, II, and IV only D. II, and III only E. NOTA

11. Given the following system of equations, find $\frac{ABC^2}{5.5}$

$$A + 4B + C + 4D = 9$$

 $2A + 2B - C + 2D = -6$
 $3A - 2B + 2C + D = 4$
 $4A + 4B + 4C + 4D = 18$

- A. 0
- B. -5
- C. -25
- D. The system is inconsistent. E. NOTA

12. How many solutions does the given system of equations have?

$$3x + 6y = 1$$
$$4x + 8y = 4$$

- A. 0
- B. 1
- C. 2
- D. Infinitely many
- E. NOTA

13. Which of the following matrices are in reduced row echelon form?

$$I. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad II. \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad III. \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad IV. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad V. \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- A. I and III only
- B. I and V only
- C. I, III, IV and V only
- D. II, III, and V only
- E. NOTA

14. There exists an equation of the plane containing the points (1, 2, 4), (0, 1, 2), and (-1, 0, 1) in the form of Ax + By + Cz = D, where A is less than or equal to 0 and A, B, C, and D are relatively prime integers. Compute ABD.

- A. -1
- B. 0
- C. 14
- D. 28
- E. NOTA

15. Find the area of the triangle whose vertices are P = (1, 2, 4), Q = (0, 1, 2), and R = (-1, 0, 1).

- A. 2
- B. $\sqrt{2}$
- C. $\frac{\sqrt{2}}{2}$
- D. $\frac{\sqrt{2}}{4}$
- E. NOTA

16. What is the scalar product of the vectors <1, -2, 3> and <1, 1, 4>?

- A. 15
- B. -9
- C. 9
- D. 11
- E. NOTA

17. A is an orthogonal $n \times n$ matrix. What is $A^{T}A$?

- A. A⁻¹
- B. –A
- $C. -A^{-1}$
- D. I_n
- E. NOTA

18. A is a skew symmetric n x n matrix. What is the trace of A?

- A. -1
- B. 0
- C. 1
- D. Not enough information
- E. NOTA

19. The following sets of points each define the vertices of a triangle. How many of these triangles have a right angle?

I.
$$(1, 2, 3), (-2, -1, -2), (-3, 0, 1)$$
 II. $(0, 1, 1), (1, 0, 0), (1, 1, 1)$

- A. 0
- B. 1
- C. 2
- D. 3
- E. NOTA

20. What is the unit vector in the direction of <1, -2, 1>x<-2, 1, 2>, where x denotes the cross product?

A.
$$\frac{1}{\sqrt{2}}$$
 <-1, -4/5, -3/5> B. $\frac{1}{\sqrt{50}}$ <5, 4, 3> C. $\frac{1}{\sqrt{50}}$ <-5, 0, 5> D. $\frac{1}{\sqrt{50}}$ <3, 4, 5> E. NOTA

21. In solving the following system of equations for the solution value of y, what expression would be obtained by using Cramer's rule?

$$14x + 27y - 104z = 70$$

 $5x - 19y + 11z = 17$
 $8x + 8y + 19z = 20$

E. NOTA

- 22. An n x n matrix A has at least one eigenvalue λ . Which of the following statements must be true for the matrix $X = (A - \lambda I_n)$?
- A. X is orthogonal.
- B. $det(X) \neq 0$.
- C. X is similar to A.
- D. X can be row reduced to the identity matrix.
- E. NOTA
- 23. Let $A = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$. What is the product of the smallest and largest eigenvalues of A?
- A. 24
- C. 6
- D. 2
- E. NOTA
- 24. Find the sum of all x which satisfy $\begin{bmatrix} x^2 + 7x 5 \\ x^2 + 5x 6 \\ x^2 6x + 7 \end{bmatrix} \begin{bmatrix} 2x + 1 \\ 1 x \\ 3 x^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$
- A. -10

- B. -5 C. 1 D. 3 E. NOTA

- 25. Standing on the western bank of a river that spans 5 miles across, Jane wishes to reach the eastern bank in her canoe. She can row her canoe at a speed of $6\sqrt{3}$ miles per hour, and the river flows due south with a current of 6 miles per hour. What distance, in miles, will Jane traverse if she crosses the river in as little time as possible?
- A. 5

- C. $\frac{5\sqrt{3}}{3}$ D. $\frac{10\sqrt{3}}{3}$ E. NOTA
- 26. Vectors $\mathbf{a} = \langle 1, 2, -2 \rangle$ and $\mathbf{b} = \langle 3, 0, 1 \rangle$. Which of the following vectors is linearly independent of \mathbf{a} and
- A. <-1, 4, -5> B. <5, -2, 4> C. <9, 6, -3> D. <6, 0, 2> E. NOTA

- 27. $A^{-1} = \begin{bmatrix} 1 & 3 & 1 \\ 0 & -6 & 7 \\ 3 & 1 & -2 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} -3 & 6 & -2 \\ 1 & -6 & 7 \\ 2 & 2 & 5 \end{bmatrix}$. What is the sum of the entries in $(AB)^{-1}$?

 A. 12 B. 22 C. 48 D. 54 E. NOTA

- 28. $A^{T} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ and $B^{T} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$. What is the product of the entries in $(AB)^{T}$?

- 29. If $\begin{vmatrix} x & 1 & 5 \\ -2 & x & 1 \\ x & -1 & x \end{vmatrix} = 0$, what statement accurately describes the only real solution for x?
- A. The solution is positive B. The solution is negative C. The solution is 0
- D. The solution is not an integer E. NOTA
- 30. What is the cosine of the angle between the two lines given by the following parametric equations?
- $L_{1} = \begin{cases} x = t + 2 & \text{and} \\ y = 2t & L_{2} = \begin{cases} x = 4t 3 \\ y = t + 3 \\ z = t 3 \end{cases}$ A. $\frac{2\sqrt{3}}{9}$ B. $\frac{5\sqrt{42}}{63}$ C. $\frac{5\sqrt{3}}{18}$ D. $-\frac{\sqrt{15}}{5}$ E. NOTA