For all questions, answer E. NOTA means none of the above answers is correct. On this test, $i = \sqrt{-1}$.

1. In the figure below, arcs CE and BD measure 80° and 20°, respectively. Segments AB, BC, AD measure 4, 8, and 3 cm respectively. Find the area of triangle ABE.

A. 12	B. 16	
C. 32	D. 64	E. NOTA

2. One of the foci of the conic section with equation $-16x^2 + 9y^2 + 96x - 54y - 207 = 0$ is located at:

A.
$$(3,-2)$$
B. $(3,3-\sqrt{7})$ C. $(3+\sqrt{7},3)$ D. $(8,3)$ E. NOTA

3. Find the area of the quadrilateral formed by connecting the foci of the curves:

$$\frac{-(x-3)^2}{9} + \frac{(y-3)^2}{16} = 1 \text{ and } \frac{(x-3)^2}{25} + \frac{(y-3)^2}{16} = 1$$

A. $6\sqrt{7}$
B. 30
C. 45
D. $10\sqrt{41}$
E. NOTA

4. Find the volume of the ellipsoid formed after rotating $\frac{(x+4)^2}{9} + \frac{y^2}{4} = 1$ by 90[°] counter-clockwise and revolving it about y = 0.

A.
$$12\pi$$
 B. 16π

 C. 18π
 D. 24π
 E. NOTA

5. The equation of the conic section determined by the polar equation $r = \frac{36\cos(\theta)}{9 - 5\sin^2(\theta)}$ can be written in the form $ax^2 + by^2 + cx + dy + e = 0$, where *a*, *b*, *c*, *d*, *e* are relatively prime integers and a > 0. Find a + b + c + d + e.

A. – 2 3	<u>В.</u> 31	
C. 41	D. 4 9	E. NOTA

National MA @2008

6. Simplify: $cis(3\theta) * cis(6\pi + \theta)$, where $0 < \theta < 2\pi$.

$A_{i}\cos\theta + i\sin\theta$	$\mathbf{B}_{\cdot} \cos \theta - i \sin \theta$	
$C_i \cos(\Box] [2\theta] + i \sin(2\theta)$	$\mathbf{D}_{.}\cos(5\theta) + i\sin(5\theta)$	E. NOTA

7. If $\cot x = a$, $\cot y = b$ and $\csc x = c$, find $\cot\left(\frac{x}{2} - y\right)$ in terms of a, b and c for $abc \neq 0$ and $|a| \neq |b| \neq |c|$. bc - ab - 1 1 + ab - bc

A.
$$\frac{b+c-a}{b+c-a}$$

C. $\frac{b+c-a}{bc-ab-1}$
B. $\frac{a-b-c}{a-b-c}$
D. $\frac{a-b-c}{1+ab-bc}$
E. NOTA

8. After rotating the conic with equation $7x^2 + Axy + 13y^2 - 16 = 0$ by 30° , the xy term is eliminated. Find A.

A.
$$-6\sqrt{3}$$
 B. $-2\sqrt{3}$

 C. $2\sqrt{3}$
 D. $6\sqrt{3}$
 E. NOTA

9. Projecting vector 4i + 4j onto 2i + 5j yields the vector:

A.
$$3i + 3j$$
 B. $3i + 4j$
 7
 7

 C. $\frac{7}{2}i + \frac{7}{2}j$
 D. $4i + 5j$
 E. NOTA

10. How many 'petals' does the graph of the curve $r = 8\cos^4\theta - 8\cos^2\theta + 1$ have?

A. 4 B. 8 C. 16 D. 24 E. NOTA

11. Given that $\sec 2\theta = \frac{x^2 + 1}{x^2 - x}$, find $\sin \theta$ for $0 \le \theta \le \pi$.

A.
$$\sqrt{\frac{2x^2 - x + 1}{2(x^2 + 1)}}$$

B. $\sqrt{\frac{x - 1}{x^2 - 2}}$
C. $\sqrt{\frac{2x^2 - 2}{x + 2}}$
D. $\sqrt{\frac{x + 1}{2(x^2 + 1)}}$
E. NOTA

12. Find the eccentricity of the conic section determined by the polar equation $r = \pm 5\sqrt{\sec 2\theta}$

A. 0 B. 1
C.
$$\sqrt{2}$$
 D. $\sqrt{5}$ E. NOTA

13. The latera recti of $4x^2 + y^2 = 16$ pass through the coordinates:

A. $(0, \pm \sqrt{3})$	B. $(0, \pm 2)$	
C. (0, ±2√3)	D. (0, ±2√5)	E. NOTA
National MA @2008	Alpha Trigono	<u>metry / Analytical Geometry</u>

14. The smallest angle θ between vector $\frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2}j$ and unit vector b is 75°. Find unit vector b, where b lies in the IV quadrant.

A.
$$-\frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2}j$$
 B. $-\frac{1}{2}i + \frac{\sqrt{3}}{2}j$

 C. $-\frac{1}{2}i - \frac{\sqrt{3}}{2}j$
 D. $\frac{\sqrt{3}}{2}i - \frac{1}{2}j$

 E. NOTA

15. When simplified, $\frac{(2+i)(3+i)(a+bi)}{(5+5i)} = 2 - i$. Find a+b, where a and b are integers.

A. -1	В. О	
C. 1	D. 2	E. NOTA

16. Find the axis of symmetry of the following curve: $x = y^2 + 4y + 5$

A.
$$x = 2$$
B. $x = 17$ C. $y = -2$ D. $y = 17$ E. NOTA

17. Which of the following can be described as a dimpled limaçon?

A.	$r = 5 + 2 \sin \theta$	$B_{\rm B} r = 5 - 4 \sin \theta$	
C.	$r = 5 - 5 \cos \theta$	$_{\mathrm{D.}} r = 5 - 10 \cos heta$	E. NOTA

18. When solving for x that satisfy $\operatorname{coth} x = 4$, we get solutions of the form $x = a \ln b + k\pi i$, $(k \in \mathbf{R} \text{ and } a, b > 0)$. Find a + b.

	13		
A.	6	В. 1	
	9		
C.	2	D. 8	E. NOTA

19. Which of the following could be the argument of $\sqrt{3-i}$?

A. $-\frac{\pi}{3}$	B. $-\frac{\pi}{6}$	
C. $\frac{\pi}{6}$	$D.\overline{3}$	E. NOTA
20. Find the sum of the slopes of t	he asymptotes of the curve with e	equation $\frac{x^2}{36} - \frac{y^2}{16} = 1$
A. 3	<mark>4</mark> В. <mark>3</mark>	
C. 1	D. 0	E. NOTA
21. The range of $f(x) = \frac{\sqrt{2}}{2}\pi(\cos x)$	$(x - \sin x) - e$ can be written as	$[a, b], \text{ for } a, b \in \mathbf{R}$. Find $a+b$.
A. $\sqrt{2}\pi - 2e$	B. $\frac{\sqrt{2}}{2}\pi - e$	
C. $\frac{\sqrt{2}}{2}\pi - 2e$	D. -2 ø	E. NOTA
National MA @2008	Alpha Trig	<u>gonometry / Analytical Geometry</u>
22. Let $\cos(4\theta) = a\cos^*\theta + bc$	$\cos^2 \theta + c$, where $a, b, c \in \mathbf{Z}$. Fin	nd Arcsin ($\alpha + b + c$).

A.	<u>π</u> 2	в. 	
C.	$\frac{\pi}{6}$	π D. 4	E. NOTA

23. The convex polygon with vertices at (4,1), (2,2), (3,4), (4,5), (x, y) has area $\frac{13}{2}$, where (x, y) passes through the line y = 2x - 7. Find x + y.

-23		
A. 2	в. 8	
C. 11	D. 16	E. NOTA

24. Let $f(x) = \frac{\tan^2 x - \sec^2 x}{\tan^2 x + \sec^2 x + 2\tan x \sec x}$. Then f(x) has:

I. Infinitely many vertical asymptotes II. Exactly one point of discontinuity III. Exactly one vertical asymptote

A. I B. II C. I,II D.II,III E. NOTA

25. Which of the following i	s equivalent to $\frac{1}{2} + \operatorname{Arctan} \frac{1}{3}$?	
A. $\frac{\pi}{2}$ C. $\frac{\pi}{6}$	B. $\frac{\pi}{3}$ D. $\frac{\pi}{4}$	E. NOTA
26. Find the period of $f(x)$ =	$= 3\sin(6x) + 4\cos(3x)$	
A. $\frac{\pi}{5}$	в. <mark>#</mark>	
C. $\frac{\pi}{9}$	$D.\overline{18}$	E. NOTA
27. Find a coterminal angle	for $\frac{512}{2008}^{\pi}$:	
A. $-\frac{689\pi}{251}$	B. $-\frac{438\pi}{251}$	
C. $\frac{315\pi}{251}$	<u>817π</u> D. 251	E. NOTA

National MA @2008

Alpha Trigonometry / Analytical Geometry

28. A locus of points for which the sum of the distances to two fixed points is constant is called:

А.	circle	B. parabola	
C.	ellipse	D. h yperbola	E. NOTA

29. The name of the surface (in 3D) described by the equation $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ is (where *x*, *y*, *z* are coordinates and *a*, *b* are constants):

A.	sphere	B. paraboloid	
C.	ellipsoid	D. h yperboloid	E. NOTA

30. Find z such that the vectors (1, 2, 2), (3, 4, z) are perpendicular.

	11		
A.	2	B. -5	
		13	
C.	5	D. 2	E. NOTA