Geometry – Hustle Solutions National MA© 2008

#1 65*π*

$$V = \frac{1}{3}Bh; 100\pi = \frac{1}{3} \bullet 25\pi h; h = 12, l = 13, LA = \pi rl = 5 \bullet 13 \bullet \pi = 65\pi$$

#2 $2\sqrt{15}$

From the center of the circle to the tangent segment is a right angle – that distance is 5 since it's the radius of the circle. The hypotenuse of the triangle would be the distance from the center of the circle (-4,1) to the point (3,7) – which is $\sqrt{85}$. Using Pythagorean theorem, we get that the length of the tangent segment is $\sqrt{60} = 2\sqrt{15}$.

#3 8\sqrt{3}

Let the hexagon be named ABCDEF. One of the shorter diagonals would be \overline{AE} . In triangle AEF, $m \angle F = 120$ and the other two angles are 30. Draw an altitude from F forming 2 30-60-90 triangles. The side of the hexagon is 8 making the altitude 4, and $\frac{1}{2}$ of the diagonal $4\sqrt{3}$ making the diagonal $8\sqrt{3}$.

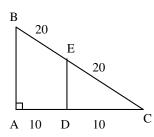
#4 $1+2\sqrt{3}$

Point A has vertices (3,1). Point B has vertices (5,1). Point C is (5,*a*). $m \angle A = 60$, AB = 2, AC = 4, $BC = 2\sqrt{3}$ making the y coordinate of point C $1 + 2\sqrt{3}$.

#5 36

Let a side of the smaller triangle be x, a side of the larger triangle would be x + 10. The sum of the perimeters would be 6x + 30 which equals 186. x = 26 which makes the side of the larger triangle 36.

#6 10000

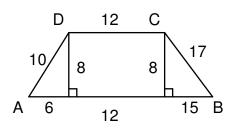

SA = LA + 2B; 2800 = 4s • 25 + 2s²; solving this quadratic gives x = 20. Volume is 20 • 20 • 25 which is 10000.

#7 32

Since the radius of the circle is 4, the diagonal of the square is 8 and a side of the square is $4\sqrt{2}$ which makes the area of the square 32.

Geometry – Hustle Solutions National MAO 2008

 $30 + 10\sqrt{3}$ #8



Since D and E are midpoints, \overline{DE} is parallel to \overline{AB} and half it's length. $BC = 2 \bullet AC$, so this is a 30-60-90 triangle making $AB = 20\sqrt{3}$ and $DE = 10\sqrt{3}$. The perimeter of CDE is $30 + 10\sqrt{3}$.

 $6\sqrt{10} + 6\sqrt{5}$ #9

Find the distance between each pair of points. $AB = \sqrt{81+9} = 3\sqrt{10}$, $BC = \sqrt{144+36} = 6\sqrt{5}$, $AC = \sqrt{9+81} = 3\sqrt{10}$ making the perimeter $6\sqrt{10} + 6\sqrt{5}$.

#10 180

Using Pythagorean theorem to find the bases of the triangles. Find the area using $\frac{1}{2}h(b_1+b_2)$. $\frac{1}{2} \bullet 8(12+33) = 180$

#11 3

Let the radius of circle A be x. That makes the radius of circle B 10 - x and the radius of circle C 14 - x. We know BC = 18 which is also the sum of the radii of circle B and C. So we have the equation 18 = 10 - x + 14 - x. x = 3 which is the radius of Circle A.

$4\sqrt{5}$ #12

The midpoint of the hypotenuse of a right triangle is equidistant from the vertices of the triangle. Therefore, the median is 6 and the hypotenuse would be $2 \cdot 6 = 12$. Using Pythag to find CB makes CB = $4\sqrt{5}$.

45 #13

Use the formula
$$\frac{|60h-11m|}{2} = \frac{|60 \cdot 2 - 15 \cdot 11|}{2} = \frac{45}{2}$$
.

rhombus #14

2

The four triangles formed by joining the midpoints are congruent by SAS making all four sides of the quadrilateral congruent. Opposite sides being congruent makes it a parallelogram, and all four

Geometry – Hustle Solutions National MA_O 2008

sides congruent makes it a rhombus.

#15
$$\frac{3}{2}\pi$$

 $\frac{30}{360} \cdot 18\pi = \frac{3}{2}\pi$.

#16

9

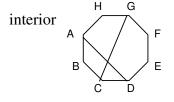
 $\frac{1}{2}$ 18/ $h = \frac{1}{2} h (b_1 + b_2)$; making the sum of the bases 18 which makes the median 9.

108 #17

Use the formula $d = \sqrt{l^2 + w^2 + h^2}$ to find the height. $11 = \sqrt{4 + 36 + h^2}$; $121 = 40 + h^2$; $81 = h^2$; h = 9. $V = 2 \cdot 6 \cdot 9$.

#18 12

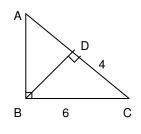
The ratio of the areas is 96:6 which simplifies to 16:1. That makes the ratio of the sides and perimeters 4:1. Set up the proportion $\frac{4}{1} = \frac{48}{r}$, x = 12.


#19

 $\sqrt{3}$

 $\sqrt{3} = \frac{s^2 \sqrt{3}}{4}$; $s^2 = 4$, s = 2. Drawing the altitude, which is opposite a 60° angles in a 30-60-90 where the hypotenuse is 2, makes the altitude $\sqrt{3}$

135 #20


 $m \angle ADE = 90$ making $\angle ADC = 135 - 90 = 45$, since the measure of one

2

angle of an octagon is 135. $m \angle DCG = \frac{135}{2}$ since CG is the longest diagonal it bisects the angles of the hexagon. Add these and subtract from 180 to find the acute angle is $\frac{135}{2}$.

 $3\sqrt{5}$ #21

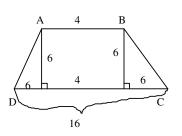
Use the similarity between the right triangles to find AD. $6 = \sqrt{4 \bullet AD}$, AD = 5. $AB = \sqrt{5 \bullet 9}$ which makes $AB = 3\sqrt{5}$.

Geometry – Hustle Solutions National MA© 2008

#22 $2\sqrt{85}\pi$

The segment from the center to the chord bisects the chord and is perpendicular to the chord giving a right triangle with legs 6 and 7. Use Pythagorean theorem to find the radius is $\sqrt{85}$ making the circumference $2\sqrt{85}\pi$.

#23 13


A + B = 90,180 - A - (180 - B) = 64. Solving this system makes B = 77, A = 13.

#24 $24\sqrt{3}$

The longest diagonal is 8. If all diagonals were drawn we would have 6 equilateral triangles with a side of 4. To find the area of the hexagon find the area of one triangle and multiply by 6.

$$6 \bullet \frac{16\sqrt{3}}{4} = 24\sqrt{3} \,.$$

See diagram for lengths of segments. Since the triangles have legs of 6, $m \angle D = 45$ which is the lower base angle, and the upper base angle would be 135. The difference is 90.