1.	C
2.	С
3	Δ
J. 4	
4.	A
5.	D
<mark>6.</mark>	B
7.	B
8.	Α
9.	C
10	C
11	
11.	A
12.	A
13.	В
<u>14.</u>	D
15.	B
16.	Α
17	D
18	C
10.	C
19.	
20.	A
21.	E
<mark>22.</mark>	B
23.	D
24.	Α
25	C
$\frac{25}{26}$	
$\frac{20}{27}$	D
27.	D
28.	В
<mark>29.</mark>	B
30.	D

1) C If F has an inverse, then $F(F^{-1}(x)) = x$. So, $e^{[F^{-1}(x)]^2} = x$ and $\ln x = [F^{-1}(x)]^2$ and $F^{-1}(x) = \sqrt{\ln x}$.	
2) C The Taylor Series of e^{-2x^2} center at x=1 is $F(x) = 1 - 2x^2 + 2x^4 - \frac{4x^2}{3}$, which is equal to the summation: $\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{n!}$.	
3) A Jacob Bernoulli is credited with the discovery of the constant <i>e</i> while trying to find the value of the $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, which turns out to be the value <i>e</i> .	
4) A $e^{2\ln(6\pi) - \ln(2\theta) + \ln(2\pi)} = e^{\ln(26\pi^2) - \ln(2\theta) + \ln(2\pi)} = e^{\ln 72\pi^2/2\theta} = \frac{72\pi^2}{2\theta}$	
5) D Sub in $X = 2u$ to change the problem to $\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{6u} = \left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^6\right)^u = (e)^6$	
6) B $\frac{d^2y}{dx^2} = n^2 e^{nx} - 6 \frac{dy}{dx} = -6ne^{nx} + 5y = 5e^{nx} \rightarrow \frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 5y = n^2 e^{nx} - 6ne^{nx} + 5e^{nx} = 0$	
$n^2 - 6n + 5 = 0 \rightarrow (n - 5)(n - 1) = 0 \rightarrow n = 5 \text{ and } 1 \text{ sum} = 6$	
7) B $\frac{\ln \cos(120^{\circ}) ^4}{\ln(\sin 30^{\circ})} = \frac{\ln(\frac{1}{2})^4}{\ln\frac{1}{2}} = \frac{\ln 16}{\ln 2} = \frac{4\ln 2}{\ln 2} = 4$	
8) A # of Faces of a polyhedron + # of Vertices - # of edges = 2	
9) C $x = 3 - 4e^{y+7} \rightarrow x - 3 = -4e^{y+7} \rightarrow \frac{3-x}{4} = e^{y+7} \rightarrow f^{-1}(x) = \ln\left(\frac{3-x}{4}\right) - 7$	
10) C $e^{x} - 12e^{-x} - 1 = 0 \rightarrow e^{x}(e^{x} - 12e^{-x} - 1) = 0 * e^{x} \rightarrow e^{2x} - e^{x} - 12 = 0$ $(e^{x} - 4)(e^{x} + 3) = 0 e^{x} - 3$ can never be true and therefore $e^{x} - 4 \rightarrow \ln 4 - x$	
11) A We know that $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = g$. A property of limits tells us that the left side of this special limit	
changes the right side by the following property: $\lim_{n\to\infty} \left(1 + \frac{b}{n}\right)^{n/2} = e^{b/2}$, and therefore $b = -1$. The limit	
equals $e^{-1} = \frac{1}{e}$	
12) A 2.71828182845904523(5)3602875	
13) B Use Integration By Parts: $u = \ln x$ $dv = x^2 dx$ $du = \frac{1}{x} dx$ $v = \frac{x^3}{3} dx$	
$\int x^2 \ln(x) dx = \frac{x^3}{2} \ln x - \int \frac{x^2}{2} dx = \frac{x^3}{2} \ln x - \frac{x^3}{9} + C$	
14) D Using Newton's Law of Cooling: $T(t) = T_s + D_s e^{-kt}$ with $T_s = 20$, $D_0 = 100 - 20 = 60$. Therefore, $T(t) = 20 + 60e^{-kt}$ Since we know $T(15) = 75 \rightarrow 20 + 60e^{-15k} = 75 \rightarrow k = -\frac{1}{15} \ln(\frac{11}{16})$.	
And then we substitute in: $T(25) = 20 + 80e^{(25/15)\ln(11/16)}$	

15) **B**

 $\ln(2x-1) + \ln(3x+1) = 1 \rightarrow \ln(6x^2 - x - 1) = 1 \rightarrow 6x^2 - x - 1 = e \rightarrow 6x^2 - x + (-1 - e) = 0$ Using the quadratic formula: $\frac{-b\pm\sqrt{b^2-4a\sigma}}{2a} = \frac{1\pm\sqrt{1-4*6*(-1-e)}}{12} = \frac{1\pm\sqrt{26+24e}}{12}$, but can only be the "+"

because the negative creates a negative value inside one of the ln() and therefore does not work.

16) A Since we take $\frac{1}{\infty} = 0$ and $\frac{1}{0} = \infty$, we can switch around $\lim_{x \to 0} (1-x)^{\frac{1}{x}} = \lim_{x \to \infty} (1-\frac{1}{x})^{x}$ which we know from question #11 to be $\frac{1}{2}$ 17) **D** v = $\int_{a}^{e} \frac{dx}{dx} = \ln e = 1$ 2 1.75 1.5 1.25 0.75 0.5 0.25 0.5 $\frac{1}{3}x$ 1.5 1 2 2.5 18) C By definition 19) C On April 29, 2004, Google filed with the SEC to raise \$2,718,281,828 t 20) **A** Both the 1^{st} and 2^{nd} derivatives are positive 21) E $i^i = e^{-(\frac{\pi}{2} + 2k\pi)}$ with $k = 0, \pm 1, \pm 2, ...$ 22) B $\operatorname{Sainh}(x) \operatorname{cosh}(x) = \operatorname{S*}_{2}^{1} \operatorname{*}_{2}^{1} (\operatorname{s}^{x} - \operatorname{s}^{-x}) \operatorname{*} (\operatorname{s}^{x} + \operatorname{s}^{-x}) = 2(\operatorname{s}^{2x} - \operatorname{s}^{-2x}) = 2\operatorname{s}^{2x} - 2\operatorname{s}^{-2x}$ 23) D -3-3*i* $z = r cls\theta$ $r = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$ $\tan \theta = \frac{b}{a} = 1 \rightarrow \theta = \frac{5\pi}{4} \text{ since in 3rd quadrant} \quad -3 - 3t = 3\sqrt{2} \text{ cis} \frac{5\pi}{4} = 3\sqrt{2} e^{i\frac{5\pi}{4}}$ 24) A $3x(\ln\sqrt[6]{6^{16}})^{x} = 3x(\ln e^{2})^{x} = 3x2^{x} = 192 \rightarrow x2^{x} = 64 \rightarrow x = 4$ 25) C $y = x \ln x \rightarrow \ln y = \frac{1}{\ln x} * \ln x \rightarrow \ln y = 1 \rightarrow y = e^{-1}$ and a derivative of a constant is equal to 0 26) D $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{n}$ 27) D $\ln(x^2 - 1) - \ln(x^2 + 1) = -1 \rightarrow \ln \frac{x^2 - 1}{x^2 + 1} = -1 \rightarrow \frac{x^2 - 1}{x^2 + 1} = e^{-1} \rightarrow x^2 - 1 = e^{-1}x^2 + e^{-1}$ $x^{2} - e^{-1}x^{2} = 1 + e^{-1} \rightarrow x^{2} = \frac{1 + e^{-1}}{1 - e^{-1}} \rightarrow x = \pm \sqrt{\frac{1 + e^{-1}}{1 - e^{-1}}}$ 28) B Count the number of letters in each word: It (2) enables (7) a (1) numskull (8) to (2) memorize (8) a (1) quantity (8) of (2) numerals (8) = 2.718281828

29) **B** All examples of the Logarithmic Spiral 30) **D** Using L'Hospital's rule: $\lim_{x \to \infty} x^4 e^{-x} = \lim_{x \to \infty} \frac{4x^8}{e^x} = \frac{12x^2}{e^x} = \frac{24x}{e^x} = \frac{24}{e^x} = \frac{0}{e^x}$