- 1. **A**. There are 3! ways of ordering the topics and 3!, 4! and 3! ways of ordering the individual topics. (3!)(3!)(4!)(3!)
- 2. **B**. There are 9x10x10x10x10=90000 5digit numbers, half of which (45000) are even.
- 3. C. All digits must be distinct and any set of 5-digits can be put in order in only one way so the answer is $\binom{10}{5} = 252$
- 4. C. $240 = 2^4 \cdot 3 \cdot 5$, so in factors there are 5 choices for a power of 2 (0,1,2,3,4), 2 choices for a power of 3 and 2 for 5. 5x2x2=20.
- 5. **B**. From any given vertex, one can draw 3 rectangles (ABEF, ADEH and ACEG) multiply by 8 vertices and divide by the 4 vertices in each rectangle 3x8/4=6.
- C. Three distinct triangles can be drawn with a given vertex at the right angle. 3x8=24.
- 7. **B**. Ten letters are to be permuted but the two 'A's can appear in any order without distinction. 10!/2 = 5(9!).
- 8. **B**. Using at most one of the A's there are 9x8x7=504 ways. Using both A's, there are 8 letters to choose for the third letter and 3 ways to permute them, 3x8=24. Total 504+24=528.
- 9. A. Of the 8 steps, 4 must be to the right and 4 up and any combination of these

will work. So
$$\begin{pmatrix} 8\\4 \end{pmatrix} = 70$$

10. **D**. There are two possibilities: 5 steps to the right, 1 to the left and 4 up or 4 steps to the right, 5 up and 1 down. So the

answer is
$$2\frac{10!}{4!5!!!} = 2520$$

- 11. **D**. There are four possibilities. The first has 2 steps to the right, 2 up and 2 diagonally up-right = 6!/(2!2!2!)=15. The others include 4 diagonal steps up-right and either an up-down, 6!/(4!1!1!)=30; left-right, 30; or diagonal up and back, 6!/(5!1!)=6 for a total of 81.
- 12. E. Add three balloons to the allotment so that everyone will get at least one. Lining up the 13 balloons, choose 2 of the 12 gaps between balloons. This corresponds

to a division of the balloons. $\binom{12}{2} = 66$

- 13. **D**. Solve (as in the previous problem) the division of each color and then multiply. $\binom{5}{2}\binom{5}{2}\binom{6}{2} = (10)(10)(15) = 1500$
- 14. **A**. This is the so called "hockey-stick" formula from Pascal's Triangle. The sum

$$= \binom{12}{9} = \frac{12x11x10}{3x2} = 220$$

- 15. E. The sum of the exponents of any term will be 6, so this problem is equivalent to dividing 6 factors among 3 variables.
 - $\binom{8}{2} = 28$
- 16. B. There are 5C2=10 ways of picking the two teachers that must get their seat right. There are only two ways the other 3 can sit so that they're all in the wrong seat (BCA, CAB). 10x2=20
- 17. A. The last 4 flips must be THHH. There are 16 possibilities for the first 4 flips but HHHH, HHHT and THHH all result in a sequence of three heads. 16 3 = 13.
- 18. **B**. There are two possibilities for the first person inside or outside. The other 7 can be place in 7! ways. 2x7! = 10080.

- 19. C. There are 7 kinds of food and he must choose 5 of them. 7 choose 5 = 21.
- 20. B. There are 3 ways to get the 5 servings: 5 different veg. (7C5); 2 servings of 1 kind and 1 of 3 others (7C1)(6C3) or 2 of 2 kinds and 1 of a third (7C2)(5C1). Adding, you get 266.
- 21. E. The digit 5 must be picked and of the digits 1, 2, 3 and 4 you pick two and also two from 6, 7, 8 and 9. Once picked there are 5!=120 numbers that can be made. 6x6x120 = 4320.
- 22. C. This is the partition problem. In this case, the easiest way to solve it is via a list: 9+2+1, 8+3+1, 7+4+1, 7+3+2, 6+5+1, 6+4+2, 5+4+3.
- 23. **B**. There are 2 partitions of 5 that will work: 2+2+1 means that of the 4 boxes, we choose 2 to get balls and of the remaining 2 boxes, I choose 1 to get a ball. $4C2 \times 2C1 = 6 \times 2 = 12$. The other partition is 2+1+1+1 and there are 4 ways of choosing the box that gets 2 balls. 12+4=16.
- 24. **C**. Treat "ABC" as 1 big letter. There are 24 ways of permuting ABC, A, B, and C. However, two are indistinguishable: ABC A B C and A B C ABC leaving 23.
- 25. B. There are 1260 ways total 7!/(2!2!) with 180 starting with 'A', 360 starting with 'E', 180 starting with 'L', 180 with 'S' and 360 beginning with 'T'. The 900th word will be the last word starting with 'S' or STTLEEA.
- 26. E. There are 6! ways of rolling 5 different numbers and 5! ways of each straight.
 6! 2x5! = 480.

- 27. A. A must be in the subset and B cannot be. C can either be in the subset of not (2 possibilities) – same for D, E, F and G. 2^5 = 32.
- 28. A. If a double is drawn (7 ways) it matches with 6 others. 6x7=42. If something other than a double is drawn (21 ways) then it matches with 12 others. 21x12=252. But each pair was counted twice, so the answer is (42+252)/2=147.
- 29. **B**. One could start with 1 dog, 1 cat, notice that there is only 1 permutation, CD or 1/2 the possible permutations. With 2 each there are 2, (CCDD and CDCD) or 1/3 the possibilities; etc. The answer is then (1/6)(10C5) = 42. OR – consider a sequence for which there are more dogs than cats at some point n=2k+1 (at 2k there are an equal number). In this sub-sequence, switch the k+1 D's to C's and vice versa getting a total sequence of 10 with 4 D's and 6 C's. On the other hand, take any sequence of 6 C's and 4 D's and stop when there is one more C than D (this must happen by the 9th letter). Now reverse the C's and D's again and you get a sequence of 5 each that has more Dogs than Cats at some point. The number of good permutations is then 10C5 - 10C6 = 42.
- 30. **D**. The number of girls is 2, 3 or 4 and boys 2, 1 or 0 respectively. (4C2)(6C2) + (4C3)(6C1) + (4C4)(6C0) = (6)(15)+(4)(6)+(1)(1)=115