Answer Key

6. A	11. E	16. B	21. D	26. C
7. B	12. A	17. B	22. C	27. C
8. A	13. D	18. C	23. B	28. D
9. D	14. C	19. A	24. B	29. C
10. C	15. E	20. B	25. C	30. C
	6. A 7. B 8. A 9. D 10. C	6. A11. E7. B12. A8. A13. D9. D14. C10. C15. E	6. A11. E16. B7. B12. A17. B8. A13. D18. C9. D14. C19. A10. C15. E20. B	6. A11. E16. B21. D7. B12. A17. B22. C8. A13. D18. C23. B9. D14. C19. A24. B10. C15. E20. B25. C

Solutions

- 1. Expanding the left and right sides results in 3x+3-x+3=2x-6-2x+2. Combining like terms yields 2x+6=-4, which results in x=-5.
- 2. The formula for the sum of the roots of $ax^3 + bx^2 + cx + d = 0$ is -b/a. So the sum of the roots of f(x) is b/a. (Note the coefficient of x^2 is -b.)
- 3. Note the portion in the denominator is equal to 5. So $5 = 1 + \sqrt{x}/5 \Rightarrow 20 = \sqrt{x} \Rightarrow x = 400$.

4. Since
$$f(f^{-1}(x)) = x$$
, we have $\frac{1+f^{-1}(x)}{1-f^{-1}(x)} = x$. Solving for $f^{-1}(x)$ gives $f^{-1}(x) = \frac{x-1}{x+1}$.

So
$$f^{-1}(10) = \frac{9}{11}$$
.

- 5. If $2x+5 \ge 0$ and $4x+7 \ge 0$, then $2x+5+4x+7 < 30 \Rightarrow x < 3$. If $2x+5 \le 0$ and $4x+7 \le 0$, then $-2x-5-4x-7 < 30 \Rightarrow x > -7$. Testing the other two cases where one is negative and the other positive result in x > -16 and x < 14. The union of these four inequalities is -7 < x < 3.
- 6. $(a+b+c)^2 = (a^2+b^2+c^2)+2(ab+ac+bc)$. So $(a^2+b^2+c^2) = 9/4-2(4/2) = -7/4$. (Note: sum of squares is negative because roots are imaginary. Also, the formula for sum of roots taken 2 at a time can be found by expanding f(x) = (x-a)(x-b)(x-c).)
- 7. An ellipse with center (h,k), major axis of length 2a and minor axis parallel to the x-axis of length 2b is in the form $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$.
- 8. Completing the square and putting the equation into the standard form yields $\frac{(x+2)^2}{4} + \frac{(y-3)^2}{9} = 1$.

$$a^2 = 4, b^2 = 9$$
. Area is $ab\pi$.

- 9. n+d = 80 and 5n+10d = 500. Solve the system to get 60 nickels and 20 dimes.
- 10. By definition, f(1) = 0 + f(0) = 1. f(2) = 1 + f(1) = 2. f(3) = 2 + f(2) = 4. f(4) = 3 + f(3) = 7. f(5) = 4 + f(4) = 11. f(6) = 5 + f(5) = 16.
- 11. Since you don't know whether x+2 is negative you cannot cross multiply.

$$\frac{x+3}{x-1} - \frac{x+5}{x+2} < 0; \quad \frac{(x+3)(x+2) - (x+5)(x-1)}{(x-1)(x+2)} < 0; \frac{x+11}{(x-1)(x+2)} < 0; \quad x < -11 \cup -2 < x < 1$$

- 12. $x(x^2-4)-(x-2)+2(2-x) = x^3-7x+6 = 0$. Product of roots is 6.
- 13. Divide both sides of both equations by xy, let a = 1/x and b = 1/y and solve the system.

- 14. Cross multiply to get 8x + 7 = A(x-1) + B(x+2). When x = 1, B = 5 and when x = -2, A = 3. B - A = 2.
- 15. There are 3 possibilities. Exponent is 0, base is 1, or base is -1. If exponent is 0, x = 1 or x = 2. But note if x = 2, then the base is also 0. 0^{0} is undefined. If the base is 1, $x^{2}-6x+8=1$. this has irrational solutions that sum to 6. If the base is -1, $x^{2}-6x+8=-1 \Rightarrow x^{2}-6x+9=(x-3)^{2}=0$. If the base is -1, the exponent must be even. At x = 3, the exponent is 2. So the sum of the solutions is 6 + 3 + 1 = 10.
- 16. f(g(3)) = f(5) = 11. g(f(3)) = g(13) = 15. 11 15 = -4.
- 17. $\log_3 x + \log_9 x^2 = \log_3 x + 2\log_9 x = 2\log_3 x = 4 \implies x = 9.$
- 18. Move the 7 over to get (x-6)(x+2) < 0. Test intervals to find -2 < x < 6.
- 19. Product of the three roots is 27, so the geometric mean is $\sqrt[3]{27} = 3$.
- 20. Formula is $A = P\left(1 + \frac{r}{n}\right)^{nt}$, where *r*,*n*,*t* are rate, number of times a year, and time, respectively.

Every three months means 4 times a year.

- 21. Plug (x/2) into f(2x) to get $f(x) = x^2/4 + x + 3$. Product is 12.
- 22. Multiplying both sides by $\ln x$ and rearranging gives $(\ln x)^2 6(\ln x) + 7 = 0$. Let $u = \ln x$. So $u^2 - 6u + 7 = 0$ and $u_1 + u_2 = 6$. Since $u_1 = \ln x_1$ and

 $u_2 = \ln x_2, u_1 + u_2 = \ln x_1 + \ln x_2 = \ln x_1 x_2 = 6$. So $e^6 = x_1 x_2$.

- 23. Discriminant is $b^2 4ac$. In this case, $5^2 4 \cdot 3 = 13$.
- 24. This factors into $x^4 + 3x^2 4 = (x^2 + 4)(x^2 1) = (x^2 + 4)(x 1)(x + 1)$. 2 real roots.
- 25. If $(x-8) \ge 0$, then $11(x-8) \le 3x \Rightarrow x \le 11$. Else, $11(8-x) \le 3x \Rightarrow x \ge 44/7$. So $44/7 \le x \le 11$. 5 numbers fall between this, namely 7, 8, 9, 10, and 11.
- 26. When the expression is expanded completely, the sum of the coefficients will be the value of expression when x = 1. So we can plug in x = 1 to get $2^4 = 16$.
- 27. The top factors into (x-1)(x+3)(x-2) and the bottom into (x-2)(x+2)(x+1). (x-2) cancels out, leaving two vertical asymptotes, x = -2 and x = -1 and a horizontal of y = 1, for a total of 3.
- 28. Using the Binomial Theorem, the term will be $\binom{5}{3}(2x^2)^3(-1/x)^2 = 10(8x^6)(x^{-2}) = 80x^4$.

29. If we add the three equations together, we get 2X + 2Y + 2Z = 108 = 2(X + Y + Z). So X + Y + Z = 54.

30. f(3) = 9 + 21 - 3 = 27