2009 Alpha School Bowl

1. Let $A\sqrt{B}$ equal the area of a triangle whose sides are 10, 12, and 6.

Let $C\pi$ equal the area of a circle inscribed in an equilateral triangle with side length 6.

Let **D** be the least integer in the domain of $y = \sqrt{2x^3 + 11x^2 - 7x - 6}$. Let **E** be the value of $\left[\log_3 \frac{24}{11}\right]$, where $\left[\right]$ represents the greatest integer function. Use $\log_3 8 \approx 1.9$ and $\log_3 11 \approx 2.2$.

Find the sum of *A*, *B*, *C*, *D*, and *E*.

2. Let *A* the sum of the digits in $10^{2009} - 10^{1009}$.

Let B = f(1), where f is an unknown function, g(x) = 3x + 2, and $f(g(x)) = x^2 - x - 3$.

Let *C* be the determinant of the matrix $\begin{bmatrix} 0 & 1 & 5 \\ 3 & 0 & 12 \\ 2 & -7 & -8 \end{bmatrix}$, when each entry is multiplied by 2. Find *X*, when *A* + *B* + *C* is written in the form $\frac{X}{Y}$, with *X* and *Y* relatively prime.

3. Find the positive difference between the minimum and maximum values of the objective function z = 5x + 7y where $x \ge 0$ and $y \ge 0$ subject to the following constraints:

$$2x + 3y \ge 6$$

$$3x - y \le 15$$

$$-x + y \le 4$$

$$2x + 5y \le 27$$

4. Let *A* be the sum of the integer solutions to $\frac{x^2 + 2x - 8}{x^3 - 32} > 0$ which are less than 5.

Let *B* be the number of distinct arrangements of ALPHASCHOOLBOWL if the letters in PASCALCALLSBOO are not used.

Let **C** be the value of $sin(\alpha + \beta)$ if $sin \alpha = \frac{3}{5}$ and $sin \beta = -\frac{5}{13}$ if $\frac{\pi}{2} < \alpha < \pi$ and $\pi < \beta < \frac{3}{2}\pi$.

Find the product *ABC*.

2009 Alpha School Bowl

5. Let $\frac{A}{B} = \frac{1}{1\cdot 2} + \frac{2}{1\cdot 2\cdot 3} + \frac{3}{1\cdot 2\cdot 3\cdot 4} + \frac{4}{1\cdot 2\cdot 3\cdot 4\cdot 5} + \dots + \frac{9}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 20}$, where *A* and *B* are relatively prime.

The arithmetic mean of two positive numbers exceeds their geometric mean by 50. By how much, *C*, does the square root of the larger number exceed the square root of the smaller number?

If $\frac{1}{9}$, $\frac{1}{x}$, and $\frac{3}{7}$ form an arithmetic progression in that order, find the value of x, written as $\frac{D}{E}$, where D and E are relatively prime.

Find $\boldsymbol{B} - \boldsymbol{A} + \boldsymbol{C} + \boldsymbol{D} + \boldsymbol{E}$.

6. Let A = the sum of the reciprocals of the positive integral divisors of 2010.

The Brady family has 6 kids: 3 boys and 3 girls. Let B = the number of ways the 6 kids can be seated in a row of 6 chairs, if all 3 boys and all 3 girls are not seated together.

Find the sum of the digits in the answers to **A** and **B**.

7. Let A = the sum of the maximum value and period of $y = -41 \cos 3x + 8$ (use degrees).

Let B = the sum of the maximum value and period of $y = 3 \cos 2x - 4 \sin 2x$ (use degrees).

Let C = the area of triangle *PQR* if PR = 13, PQ = 15, and $m \angle P = 135^{\circ}$

Let D = the square of the distance between *J* and *L* if vector *OJ* has the origin as its initial point and 150° as its direction angle, vector *OL* has the origin as its initial point and 225° as its direction angle, and. $\overline{|OJ|} = |\overline{OL}| = 8$

Find B - A + C + D, written as a fraction.

8. The quotient and difference of two positive numbers are both equal to 9. What is the most common digit *A* used in the larger number, when written in simplest form as an improper fraction?

Let \boldsymbol{B} = the 200th triangular number.

Let *C* the sum of the first three perfect numbers.

Let D = the number of integral factors of the lowest common multiple of 205, 408, and 45.

Find A + B + C + D.

9. Let A = the range of the members of the solution set for $\sin 5x + \sin x = 0$, where $0^{\circ} \le x < 360^{\circ}$. Let B = the solution set for $\frac{1+\cos\theta}{\sin\theta} = -1$, where $-180^{\circ} \le \theta \le 180^{\circ}$.

Let C = the solution set for $tan \theta - tan 10^\circ = 1 + tan \theta tan 10^\circ$, where $-180^\circ \le \theta \le 180^\circ$.

Let $[D, E] \cup [F, G]$ be the solution set for $2\sin^2 x + \cos x \ge 1$, where $0^\circ \le x \le 360^\circ$.

Find A + B + C + E.

10. Given: $4y^2 - 9x^2 + 16y + 18x = 29$. Let *A* = eccentricity

Let \boldsymbol{B} = distance between foci

Let C = distance between vertices

Let D = distance between focus with positive ordinate and asymptote with positive slope

Let E = length of transverse axis

Let F =focal width

Find the value of $\frac{ABC}{DEF}$.