<u>E is none of these</u>

1.	Find the sum of the 3 highest primes that divides $5^{12} - 4^{12}$?			
	a) 139	b) 205	c) 623	d) 823
2.	What is the smallest positive number that has exactly 10 positive factors?			
	a) 12	b) 24	c) 36	d) 48
3.	What is the highest prime number that always divides <i>aaabbb</i> where <i>a</i> and <i>b</i> are positive integers?			
	a) 37	b) 29	c) 13	d) 3
4.	The polynomials $x^3 + ax^2 + 9x + 6$ and $x^3 + bx^2 + 6x + 3$ have a common quadratic factor over the set of polynomials with integral coefficients. Find the ordered pair of integrals (a, b).			
	a) (2, 3)	b) (5, 4)	c) (3, 4)	d) (5,2)
5.	What is the remainder when $9^{83} + 5^{32}$ is divided by 6?			
	a) 3	b) 2	c) 5	d) 4
6.	If $154_b + 345_b = 268_{10}$ find the value of <i>b</i> .			
	a) 6	b) 7	c) 9	d) 12
7.	Find the number of distinct positive integral divisors of (30) ⁴ excluding 1 and 30.			
	a) 64	b) 100	c) 123	d) 148
8.	3. Define $n_{a!}$ for <i>n</i> and <i>a</i> positive to be: $n_{a!} = n(n-a)(n-2a)(n-3a)(n-ka)$, where k is the greatest integer for which $n > ka$. Find the quotient $\frac{72_{8!}}{18_{2!}}$.			
	a) 2 ¹⁷	b) 4 ⁶	c) 2 ¹⁵	d) 4 ⁹
9.	9. The number 32639 is the product of two primes, one of which is roughly twice as large as the other. Find the sum of these two primes.			

a) 384 b) 381 c) 378 d) 356

- 10. Find the number of positive integers less than 800 that is not divisible by 5 or 7.
 - a) 246 b) 268 c) 553 d) 576

11. Given: $S_n = \{S_1, S_2, S_3, ..., S_k\}$, where $S_1 = 2$, $S_2 = 4 + 6$, $S_3 = 8 + 10 + 12$,... Continuing in the same pattern where each new sum is one term more than the preceding one, with the 1st term of the new sum is two more than the last term of the last sum, find the sum of S_{20} .

- a) 8020 b) 9120 c) 10200 d) 12020
- 12. Find the units digit in the expression 2007^{2009} .
 - a) 9 b) 3 c) 1 d) 7
- 13. For every positive integer n, $7^{2n+1} + 1$ is divisible by the positive integer k. Find the largest value of k.
 - a) 2 b) 4 c) 8 d) 16
- 14. The three digit number $2a_3$ is added to 326 to give the 3-digit number 5b6. If 5b9 is divisible by 9, find a + b.
 - a) 9 b) 6 c) 5 d) 4
- 15. In the following equation each of the letters represents a uniquely different digit in base ten. $BA \cdot MA = QQQ$. Find the sum of A + M + Q + Y.
 - a) 21 b) 20 c) 19 d) 18
- 16. The number $(2^{48} 1)$ is exactly divisible by two numbers between 60 and 70. Find the sum of the two numbers.
 - a) 125 b) 126 c) 127 d) 128
- 17. The number *N* is represented by the base *q* numeral 1441. When divided by eleven, *N* leaves a remainder of 1. If $1 < q \le 10$, find *q*.
 - a) 3 b) 5 c) 7 d) 9

- 18. *AB* and *CA* are decimal numerals, and *A*, *B*, *C* are distinct digits. If 4 times *AB* equals *CA*, find the value of *C* in the ordered triple (*A*,*B*,*C*)
 - a) 2 b) 3 c) 6 d) 9

19. A sequence of digits has the property that each pair of successive digits, taken in the order written, forms a decimal numeral representing a multiple of either 17 or 23. If the first digit is 9 and the sequence is finite, what is its last (possible) digit?

- a) 1 b) 3 c) 5 d) 7
- 20. Find the greatest common factor of all numbers of the form $2^n \cdot 3^n 1$, where *n* is an integer greater than 1.
 - a) 5 b) 11 c) 17 d) 43

21. Find the largest number *n* for which 5^n is a factor of 309!

a) 75 b) 63 c) 61 d) 47

22. Find the number of ordered triples (*A*, *B*, *C*) where *A*, *B* and *C* are positive integers, *A* is a factor of *B*, *A* is a factor of *C*, A < B < C, and *A*+*B*+*C*=30.

- a) 4 b) 8 c) 9 d) 11
- 23. What is the remainder of the division of 14414 · 14416 ·14418 by 14?
 - a) 4 b) 7 c) 8 d) 13
- 24. *MNP* and *PNM* are, respectively, the base 9 and base 7 numerals for the same positive integer *ABC* in base ten. Find M + N + P.
 - a) 8 b) 7 c) 6 d) 5
- 25. In how many zeros does 2009! end?
 - a) 401 b) 441 c) 457 d) 480
- 26. The infinite sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 20, 2 1, 22, 23... is obtained by writing the positive integers in order.

What is the 2009th digit in this sequence?

- a) 4 b) 3 c) 2 d) 1
- 27. 100 is divided into two parts such that one part is divisible by 7 and the other part is divisible by 11. Find the product of the 2 parts.
 - a) 2448 b) 2464 c) 2664 d) 2848
- 28. How many of the numbers denoted by 3¹, 3², 3³, ...3⁹⁹, 3²⁰⁰⁹, written in base 10 notation end in 1?
 - a) 325 b) 405 c) 551 d) 573
- 29. If *A* and *B* are digits and 30*AB*5 can be expressed as the product of 225*n*, find the largest possible value of *n*.
 - a) 127 b) 133 c) 137 d) 141
- 30. Twelve consecutive integers are added together. What is the remainder when the sum is divided by 4?
 - a) 1 b) 2 c) 3 d) 4

Tie-Breakers:

- 1. The grades on 6 tests all range from 0 to 100 inclusive. If the average for the six tests is 93, what is the lowest possible grade on any one test?
- 2. Find the smallest positive ordered pair of integers (x, y) if 11x + 15y = 1.
- 3. Find the largest positive integer n such that 2009! is divisible by 10ⁿ.