E is None of These

- 1. The number of distinct points between the graphs of the curves $r^2 = 4\cos 2\theta$ and $r = 2\sqrt{2}\sin\theta$ is
 - A. 1 B. 2 C. 3 D. 4

2. Which of the following best describes the **3-D** graph of the equation $x^2 + 4xy + 4y^2 - z^2 = 0$?

- A. an elliptic cone B. a hyperboloid of one sheet
- C. two lines D. two planes
- 3. A parabola contains (-5,0),(0,1), and (7,2) and its axis of symmetry is perpendicular to the y-axis. Find the y-coordinate of the vertex.
 - A. -9 B. -5 C. -2 D. 0

4. Circle O has radius r. If sector COD has a perimeter 10 and area 4, find the sum of all possible values of r.

A. $\frac{4}{5}$ B. 1 C. 4 D. 5

5. The polar graph $r^2 = \sec 2\theta$ is a

- A. circle B. 4 leaf rose C. hyperbola D. lemniscates
- 6. For a certain ellipse, the distance between a focus and the closer vertex is 2. If the length of the minor axis is $4\sqrt{5}$, find the length of the major axis.
 - A. 6 B. 12 C. 24 D. 42

7. Express the equation $x^2 + xy + y^2 = 1$ in polar coordinates *r* and θ .

A. $r^2 + \cos\theta\sin\theta = 1$ B. $r^2 + r\cos\theta\sin\theta = 1$

- C. $r^2 \sin^2 \theta + r \cos \theta \sin \theta = 1$ D. $r^2 (1 + \cos \theta \sin \theta) = 1$
- 8. Express $r = \frac{6}{2 + \cos \theta}$ in rectangular form.
 - A. $3(x+2)^2 + 4y^2 = 48$ B. $3(x+2)^2 - 4y^2 = 4$ C. $4(x+2)^2 + 3y^2 = 4$ D. $4(x+2)^2 - 3y^2 = 4$

- 9. Which of the following best describes the following equation $y^2 4xy + 4x^2 2x + y 12 = 0$?
 - A. No Graph B. 2 parallel lines C. hyperbola D. ellipse
- 10. Place in order from smallest to largest in terms of eccentricity: Parabola (P), Ellipse (E), Hyperbola (H), Circle (C).
 - A. C,E,P,H B. C,H,P,E C. C,E,H,P D. P,E,H,C
- 11. Find the values of *r* for which the circle $x^2 + y^2 = r^2$ intersects the line 2x + y = 5.
 - A. $|r| \ge \sqrt{5}$ B. $r > \sqrt{5}$ C. $r \ge 5$ D. $|r| > 2\sqrt{5}$
- 12. If the eccentricity of a conic is 3, find the number of linear permutations of the letters in the name of the conic.
 - A. 360 B. 6720 C. 1260 D. 362880
- 13. A triangle having sides 7, 8, and 9 is inscribed in a circle O. find the radius of the circle.
 - A. $\sqrt{5}$ B. $\frac{2\sqrt{5}}{21}$ C. $\frac{21\sqrt{5}}{5}$ D. $\frac{21\sqrt{5}}{10}$

14. Which equation represents the set of points for which the distances to (4,0) and (-4,0) sum to 10?

- A. $25x^2 + 9y^2 = 225$ B. $9x^2 - 25y^2 = 225$ D. $9x^2 + 16y^2 = 144$
- 15. Which of the following equations represent the graph of $x^2 y^2 = 2$ rotated 45° counterclockwise around the origin?
 - A. xy = 1 B. xy = -1 C. xy = 2 D. $x^2y^2 = 1$
- 16. A circle of radius 13 is circumscribed about a regular 24-sided polygon. Find the area of the polygon.
 - A. $507(\sqrt{6}+\sqrt{2})$ B. $507(\sqrt{6}-\sqrt{2})$ C. $169(\sqrt{6}+\sqrt{2})$ D. $169(\sqrt{2}-\sqrt{6})$
- 17. If the equation of the perpendicular bisector of the segment connecting the intersection points of the graphs of $x^2 6x + y^2 4y 12 = 0$ and y = x, is written in Ax + By = C form, what is A + B + C?
 - A. 3 B. 1 C. 3 D. 1

18. If the locus of points equidistant from the point (6,8) and the line 4x + 3y = 4 were written in the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, such that A, B, C, D, E, and F are relatively prime and A > 0, find A + B + C + D + E + F.

A. 1816 B. 1841 C. 1889 D. 2377

19. The graph $r = 3 + 2\cos\theta$ is a(n)

A. limaçon with inner loop	B. Cardioid
C. dimpled limaçon	D. convex limaçon

20. Find the area of the circle defined by the polar equation $r^2 - 8r \cos \theta + 6r \sin \theta = 0$.

A. 36π B. 25π C. 16π D. 9π

21. Find the volume of an elliptic cone whose base is given by the graph $16x^2 + 9y^2 + 64x - 18y - 71 = 0$ and whose vertex is **10** units above the center of the base.

A. 120π B. 60π C. 40π D. 20π

22. An arch is in the form of a semi-ellipse. It is 48 feet wide at the base and has a height of 20 feet. How wide is the arch at the height 10 feet above the base?

A. $12\sqrt{3}$ B. $12\sqrt{2}$ C. $6\sqrt{3}$ D. $6\sqrt{2}$

23. Find the center of the circle with equation $4x^2 + 4y^2 - 16x - 8y - 180 = 0$.

- A. (2,1) B. (2,-1) C. (-2,1) D. (-2,-1)
- 24. Given the equation $8x^2 12xy 8y^2 + 6\sqrt{10}x 2\sqrt{10}y = 30$, find the measure of the acute angle, to the nearest degree, that will eliminate the *xy* term.
 - A. 18° B. 37° C. 45° D. 72°

25. Omit

- 26. Which of the following is the ordered pair for the y- intercept for the given equation: y-6=7(x+4).
 - A. (0,28) B. (0,22) C. (0,4) D. (0,-34)

27. The graph of $x^2 - y^2 - 2x - 4y - 4 = 0$ is the equation of which one of the following?

A. circle B. ellipse C. hyperbola D. parabola

28. Find the center of the graph in the above problem #27.

A. (1,2) B. (1,-2) C. (-1,-2) D. (-1,2)

29. Find the coordinates of the turning point of the curve $y = x^2 - 8x + 15$. A. (0,-1) B. (2,0) C. (4,-1) D. (5,0)

30. Given the following coordinates that each lie on the circumference of circle O: , determine the center of circle O: (-2,0), (6,6), and (5,7).

A. (3,2) B. (2,3) C. (1,3) D. (3,4)

Tiebreakers

- 1. Find the value of *k* such that $y = x^2 6x + k$ is tangent to the *x*-axis.
- 2. Find the area of the circle given by $2x^2 + 2y^2 4x + 8y 6 = 0$.
- 3. Three circles of radius 4 are externally tangent to each other. A band is wrapped tightly around the outside of the circles. Find the length of the band.