<u>E is None of These</u>

1.	Find the solution set o	f: $\frac{1}{3x-1}$ +	$\frac{2}{4x-1} \ge 0.$						
a)	$(^{3}/_{5},\infty)$	b)	¹ / ₃ ,∞)		c) (¹ /	(4, 1/3)	d) (¹ /	4, ³ /10]∪($^{1}/_{3},\infty$)
2.	Find the sum of the so	lutions o	of $\log_2 x + \log_2(3)$	3x + 2) =	0.				
a)	1	b)	¹ / ₃	c)	(-2/3)		d) ² /3	3	
3.	Solve: $2x - 3y - 2z = g$ x - y + z = g 2x + y + 3z = g	5 and the) 13	en find 2 <i>x – y</i> .						
a)	-5	b)	-3		c) 4			d)	7
4.	If $\frac{2-i}{1-i} + \frac{2}{2+i} = a + bi$; $i =$	$\sqrt{-1}$; fin	nd the sum of a	+ b.					
a)	¹³ / ₃	b)	⁵ / ₂	c) ¹²	/5		d) 4		
5.	The sum of three num number, while twice th	bers is 7 1e first n	o. Three times t umber is 4 more	he secone than the	d numb third r	per is 4 less that number. Find t	n twice t he secor	he thre 1d num	ee Iber.
a)	12	b)	20		c) 2	8	d)	36	
6.	Find the sum of the so	lution(s)) to $3^{2x+2} - 3^{x+3}$	$-3^{x}+3=$	= 0.				
a)	4 b)	2		c) 1			d) o		
7.	Solve : $2 - \frac{1}{2 - \frac{1}{x - 2}} = 5.$								
a)	4	b)	¹⁹ / ₇		c)	¹¹ / ₇		d)	1
8.	Find the sum of the so	olutions t	$0 \left \frac{2 x -3}{4 x-1 } \right = 2$						
a)	⁸ / ₃	b)	²⁹ / ₁₅		c)	0		d)	- ⁴ / ₁₅
9.	Find the solution set o	of $x^3 + x^2$	≥ 2 <i>x</i> .						
a)	[-2, 0]	b)	[-2, 1]		c)	[-2, 0] ∪ [1, ∞)d) (-∞	,o]∪	[1,∞)

10. If $(a + 1)^2 x^2 - 3(a - 2)x + 5 = 6$ when x = -3, find *a*.

a)
$$\{2/_3, -5/_3\}$$
 b) $\{5/_3, -2/_3\}$ c) $\{1/_3, -2/_3\}$ d) $\{1/_3, -10/_3\}$

11. Find all solutions to: $2tan y \csc y + 2 \csc y + tan y + 1 = 0$. $y \in [0, 2\pi]$

a)
$$\{\pi/_4, 2\pi/_3\}$$
 b) $\{\pi/_6, 5\pi/_6\}$ $\{2\pi/_3, 5\pi/_3\}$ c) d) $\{3\pi/_4, 7\pi/_4\}$

12. $f(x) = 3x^2 - 2x + 1$; $g(f(x)) = 6x^2 - 4x - 1$: find g(-2).

a)
$$-7$$
 b) o c) 3 d) $2x-1$

13. $2\log_3 \sin 3x - 2\log_3 \cos 3x = 1, x \in [0, 180^\circ]$. Which of the following is in the solutions set?

a) 50 b) 80 c) 110 d) 130
14. Find the value of c if
$$\sqrt{\frac{3}{2c} + \sqrt{\frac{1}{c}}} - \sqrt{\frac{3}{2c} - \sqrt{\frac{1}{c}}} = \sqrt{2}$$

a) 1 b) 2 c) 3 d) 4

15. The perimeter of an isosceles triangle is 40 and its area is $50\sqrt{2}$. Find the length of the shortest side.

a) 20 b) 15 c) 10 d) 5

16. If $(x + \sqrt{2})$ is a solution to $2x^2 - 3(a - 2\sqrt{2})x + 5 = 0$, find the value of *a*.

a) $\sqrt{2}/_2$ b) $\sqrt{2}/_4$ c) $\sqrt{2}/_4$ d) $-5\sqrt{2}/_6$

17. Find the radius of the circle whose center is C(-2, 1) and is tangent to the line 2x - y = -1.

- a) $4\sqrt{5}$ b) $\frac{\sqrt{2}}{2}$ c) 8 d) $\frac{4\sqrt{5}}{5}$
- 18. A man can rent all 40 of his apartments for \$500 each month. However, for each \$100 increase in rent he rents 5 less. How much should he charge per month to guarantee the best return?
- a) 550 b) 600 c) 650 d) 700

19. Find all real values of <i>x</i> that satisfies: $\frac{x^4 + x^3 + x + 1}{x^4 - x^3 + x - 1} = 0$											
a)	-1	b)	0		c)	1	(d)	Ø		
20. Find the <i>y</i> -value in the solution of: $log(3x + 5) - log y = 1$ and $5x - 2y = 6$.											
a)	³⁵ / ₂₂	b)	¹⁷ / ₁₁		c) ²⁵	/44	(d)	⁴³ / ₄₄		
21. Let k, l, m, n, be zeros of $x^4 - 10x^3 + 35x^2 + 25 = 0$. Evaluate $k^2 + l^2 + m^2 + n^2$.											
a)	15	b)	25		c)	30	(d)	35		
22.	2. The graphs of $x^2 + y = 10$ and $x + y = 8$ intersect in 2 points. Find the distance between these points.										
a)	3	b) 3√	2		c)	5	(d)	9		
23. The solution set to $\frac{3}{x} + \frac{5}{y} = 10$ and $\frac{2}{x} + \frac{3}{y} = 9$ is (x, y) find $30x - 21y$.											
a)	597	b) 30	3		c)	1	(d)	5		
24. If $\frac{S}{x-2} + \frac{T}{x+3} = \frac{8x-1}{x^2+x-6}$, find the sum of S + T.											
a)	9	b)	2		c)	4	(d)	7		
25.	If $z = 3 + 2i$, simplify: $z\bar{z}$	+ 2 <i>z</i> –	3 <i>ī</i> ; (note: <i>ī</i> is th	ne comj	plex co	njugate of z).					
a)	10 – 2 <i>i</i> b) 11 -	- 2i		c)	10 + 1	oi	d) 25 –	6i			
26. Let $P = \frac{x+1}{x}$, $\frac{1}{100} \le x \le 100$. For what value of x does P have its smallest value?											
a)	100	b) 50)		c)	10	(d)	.1		
27. Which of the following is a solution to: $6\left(x + \frac{1}{x}\right)^2 - 35\left(x + \frac{1}{x}\right) + 50 = 0$											
a)	1	b)	¹ / ₃	c)	4	ŀ	d)	6			
28.	8. If $\begin{vmatrix} x & -1 & 2 \\ 2 & x & 4 \\ 0 & 3 & 1 \end{vmatrix} = 2$. find the product of the real solutions.										
a)	2	b)	6		c)	-12	(d)	12		

3

29. Find the number of positive integer pairs that are in the solution of 5x + 11y = 97

a) 0 b) 1 c) 2 d) 3

30. Find the sum of the solution(s) to: $8(log_3 x)^2 = 14log_3 x + 3$

a) $\sqrt{3} - \sqrt[4]{3}$ b) $4\sqrt{3}$ c) $3\sqrt{3} + \sqrt[4]{3}$ d) $2\sqrt{3} - \sqrt{6}$

Tie-Breakers:

- 1. Find the solution set for $1 \le |2x 1| \le 5$.
- 2. Find \mathbf{A} in $\mathbf{A}\mathbf{X} = \mathbf{C}$ where $\mathbf{X} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \end{bmatrix}$; $\mathbf{C} = \begin{bmatrix} 2 & -5 & -5 \\ 4 & 23 & 1 \end{bmatrix}$ and \mathbf{A} is a 2 x 2 matrix.
- 3. Find the area of the region between y = |x + 1| |x 2| and y = 7.