Let $\mathbb{N} = \{1, 2, 3, \dots\}, \mathbb{Z} = \text{the set of integers}, \mathbb{Q} = \text{the set of rational numbers}, \mathbb{R} = \text{the set of real numbers, and } \mathbb{C} = \text{the set of complex numbers}.$ We will let $i = \sqrt{-1}$. Enjoy the test!

- 1. Which of the following functions are odd?
 - I. $3x^3|x| 2x$ II. $\cosh(x)$ III. $\ln(x + \sqrt{x^2 + 1})$
 - (A) I only (B) II only (C) I, III (D) I, II (E) NOTA

2. Define $f : \mathbb{Q} \to \mathbb{Z}$ where $f\left(\frac{p}{q}\right) = p$, where $p, q \in \mathbb{Z}$ and $q \neq 0$. Why is f not a function?

- I. f is not surjective (onto).
- II. f is not injective (1-1).
- III. f is not well-defined (every input has exactly one output).
- (A) I only (B) II only (C) I, III (D) I, II (E) NOTA
- 3. Which of the following functions counts the number of divisors of an arbitrary $n \in \mathbb{N}$?
 - (A) $\gamma(n)$ (B) $\sigma(n)$ (C) $\varphi(n)$ (D) $\pi(n)$ (E) NOTA
- 4. Which of the following are true about $f(x) = \begin{cases} -x 2 & x \le -2 \\ -\frac{2}{5}x + \frac{16}{5} & -2 < x < 3 \\ x^2 6x + 11 & x > 3 \end{cases}$
 - I. The discontinuity at x = -2 is removable.
 - II. $\lim_{x \to -2^+} = f(-2).$
 - III. $\lim_{x \to 3} f(x)$ exists.
- 5. Consider $f: x \mapsto x^2 4x$. Find the range of f.
 - (A) $[2,\infty)$ (B) $[-4,\infty)$ (C) $(-\infty,2]$ (D) $(-\infty,-4]$ (E) NOTA
- 6. Let Z(f) denote all the real zeros of a function f. If $f(x) = 12x^3 8x^2 27x + 18$, find the product of all members of Z(|f|).
 - (A) $-\frac{27}{8}$ (B) $-\frac{3}{2}$ (C) $\frac{27}{8}$ (D) $\frac{9}{4}$ (E) NOTA

Page 2

For the following three questions, let $g(x) = \frac{x^3 - 3x^2 - 9x + 27}{x^2 + 2x - 15}$

- 7. If (x, y) represents the coordinates of the hole in the graph of g, find x + y:
 - (A) 3 (B) 0 (C) (D) There is no hole

(E) NOTA

- 8. Indicate the number of zeros of g:
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) NOTA
- 9. Find the x-intercept of the slant asymptote:
 - (A) (-5,0) (B) (5,0) (C) (0,0) (D) (0,-5) (E) NOTA
- 10. Define $f(x) = \alpha x^5 + \beta x^4 + \gamma x^3 + \delta x^2 + \epsilon x + \zeta$, such that f maps the complex to the complex, and $\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \mathbb{C}$. Provided that ω is a non-real zero of f, which of the following must be true?
 - I. $\overline{\omega}$ is a zero of f
 - II. f has no more than 3 real zeros
 - III. $\frac{\zeta}{\alpha}$ is possible root of f
 - (A) I only (B) III only (C) I, II (D) I, II, III (E) NOTA

For the next two problems, consider the following: Let $\ell : \{1, 2, \dots, 12\} \to \mathbb{N}$ be the function which maps an integer to the number of letters in its standard English name. So $\ell(1) = 3$ since "one" has 3 letters in it, and $\ell(2) = 3$. Now, let $\mu : \{1, 2, \dots, 12\} \to \mathbb{N}$ be the calendar map, where $\mu(1) = 7$ since January is the first month, and "January" has seven letters. g(2) is the number of letters in "February", so g(2) = 8.

- 11. Find $(\ell \circ \mu)(11)$.
- 12. What is the smallest value of n such that $\ell^{(k)}(12) = \ell^{(n)}(12)$ for all $k \ge n$, where $\ell^{(n)}(x)$ is ℓ composed with itself n times, so that $\ell^{(1)}(x) = \ell(x), \ \ell^{(2)}(x) = \ell(\ell(x))$, etc.
 - (A) 2 (B) 3 (C) 4 (D) 5 (E) NOTA
- 13. Let β be a function which maps the integers base ten to the integers base eight, where $\beta(x) = 0_{eight}$ if x contains the numerals 8 or 9. If x does not contain the numerals 8 or 9, then $\beta(x)$ in base eight has the same representation as x in base ten. For example, $\beta(20) = 20_{eight}$ and $\beta(1234567) = 1234567_{eight}$, but $\beta(91) = 0_{eight}$ and $\beta(8989891234567) = 0_{eight}$. Which of the following are true?
 - I. β is injective
 - II. β is surjective
 - III. β is well-defined
 - (A) I only (B) II only (C) II, III (D) I, II, III (E) NOTA

14. Let $f(x) = x^2 + 4x - 7$. For how many non-positive integral values of x does f(x) take on negative values?

- (A) 5 (B) 6 (C) 7 (D) ∞ (E) NOTA
- 15. Let g(x) = ||x+2|-3|, and let a be the number of relative minima, b be the number of relative maxima, and c be the product of the zeros. Find a + 2b c.
 - (A) -1 (B) -2 (C) 8 (D) 9 (E) NOTA
- 16. In the function g(x) given above, what is the y-coordinate of the y-intercept?
 - (A) -3 (B) -1 (C) 1 (D) 3 (E) NOTA
- 17. Let $\psi(x)$ be a function which is both odd and even. If possible, find $\psi(-2)$.
 - (A) -2 (B) 0 (C) 2
 - (D) A function cannot be both even and odd (E) NOTA
- 18. Find the equation of the resulting function when reflecting $f(x) = x^3$ about the line y = x 2.
 - (A) $\sqrt[3]{x-2} 2$ (B) $\sqrt[3]{x-2} + 2$ (C) $\sqrt[3]{x+2} 2$ (D) $\sqrt[3]{x+2} + 2$ (E) NOTA
- 19. Consider the graph of a quadratic function in the Cartesian plane, where x is considered to be a function of y. How many of the following must be true?
 - The function may have more than one *y*-intercept.
 - The function must have one or more *x*-intercepts.
 - The horizontal line test will determine if the function is one-to-one.
 - The range is all real numbers.
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) NOTA

20. Let $\eta : \mathbb{Z} \to \mathbb{R}$ be a 1-1 function such that $\eta^{-1}(3) = 4$ and $\eta(k+1) = \frac{1}{5}\eta(k)$. Find $\sum_{i=-1}^{\infty} \eta(i)$.

(A) $\frac{375}{4}$ (B) $\frac{1875}{4}$ (C) $\frac{9375}{4}$ (D) $\frac{46875}{4}$ (E) NOTA

21. Find the range of $q(x) = \frac{2x+1}{x-3}$ if the domain is $\{x | x \neq 3\}$:

(A)
$$\left\{ x | x \neq -\frac{1}{3} \right\}$$
 (B) $\left\{ x | x \neq -\frac{1}{2} \right\}$ (C) $\{ x | x \neq 2 \}$ (D) $\{ x | x \neq 3 \}$ (E) NOTA

22. The function $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}$, has the property that for each x in its domain D, then $\frac{1}{x}$ is also in D, and $f(x) + f\left(\frac{1}{x}\right) = x$. Find the largest possible domain, D. (A) $\{x: x \neq 0\}$ (B) $\{x: x > 0\}$ (C) $\{x: x < 0\}$ (D) $\{-1, 1\}$ (E) NOTA 23. Suppose that $f: X \to \mathbb{R}$, $g: Y \to \mathbb{R}$ where X and Y are non-empty subsets of \mathbb{R} . Suppose also that for all $x \in X$, the compositions are defined and $(f \circ g)(x) = (g \circ f)(x)$. How many of the following five statements must be true?

- $X \subseteq Y$ $Y \subseteq X$ f and g are inverses both f and g are one-to-one
- both f and g are continuous
- (A) 2 (B) 3 (C) 4 (D) 5 (E) NOTA
- 24. Define f(x) = ||x 3| 4|, and note that f can be written as a piecewise function with 4 branches. Given that the equation of each branch of f can be written in the form y = ax + b, what is a + b when x = 2?
 - (A) -2 (B) 2 (C) 6 (D) 8 (E) NOTA
- 25. Let f(x) = mx + b be a linear function. For which of the following situations must f pass through infinitely many lattice points? (A lattice point is an ordered pair in the xy-plane with integer values).
 - I. m is rational, not equal to zero
 - II. m is irrational
 - III. m = 0
 - (A) I only (B) III only (C) I, III (D) I, II, III (E) NOTA

26. Let $f(x) = x, g(x) = x^2, h(x) = x^3$, and let all be defined for all real numbers. Which of the following is never true?

- (A) f(x) < h(x) < g(x)(B) g(x) < h(x) < f(x)(C) h(x) < f(x) < g(x)(D) h(x) < g(x) < f(x)(E) NOTA
- 27. Let f(x) be a function. Translate the function up 2 units, and to the right 3 units. Then, reflect it over the y-axis, and compress it vertically by a factor of $\frac{1}{2}$. What is the equation of this function?
 - (A) $\frac{1}{2}f(-x+3)+1$ (B) $\frac{1}{2}f(-x+3)+2$ (C) $\frac{1}{2}f(-x-3)+2$ (D) $\frac{1}{2}f(-x-3)+1$
 - (E) NOTA

28. Find
$$\lim_{x \to 4} f(x)$$
 when $f(x) = \frac{2x - 8}{2x - \sqrt{4x^2 - 3x + 12}}$.
(A) 0 (B) $\frac{2}{3}$ (C) $\frac{16}{3}$ (D) $\frac{32}{3}$ (E) NOTA

29. Let $f(z) = e^{2z}$ be a complex-valued function. Find the period of f.

(A) π (B) $i\pi$ (C) 2π (D) $i2\pi$ (E) NOTA

30. Find the axis of symmetry of $f(x) = -12x + 5 - 2x^2$.

(A)
$$x = -3$$
 (B) $x = -\frac{1}{12}$ (C) $x = \frac{5}{24}$ (D) $x = 3$ (E) NOTA

TB1 Find $\lim_{x\to 0^+} g(x)$ when $g(x) = \lfloor -x \rfloor$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to x.

TB2 Find k so that the following function is continuous: $f(x) = \begin{cases} x^2 - 4x + 7 & x \le 2 \\ k \\ \frac{1}{3}x + 11 & x > 2 \end{cases}$

TB3 Find the range of $h(x) = \arctan(-e^x)$ if we take the domain to be all positive real numbers.