A few friendly reminders: NOTA means None Of The Above, and we define the imaginary unit as $i = \sqrt{-1}$. Now take a deep breath, enjoy, and good luck!

1. Evaluate
$$\sum_{n=0}^{10} 4 + 3(n-1)$$
.
A. 165 B. 169 C. 176 D. 190 E. NOTA
2. Let a_n be an arithmetic sequence, with $a_2 = 5$ and $a_9 = -16$. Find the sum of the first 10 terms.
A. -55 B. -5 C. -115 D. 155 E. NOTA
3. Find $\sum_{n=1}^{\infty} \frac{4^n - 8}{5^n}$.
A. -5 B. 2 C. 6 D. 15 E. NOTA
4. Evaluate $\prod_{n=2}^{25} \log_{n+1}(n+2)$.
A. 3 B. 2 log(3) C. 9 D. 1 E. NOTA
5. Evaluate $\sum_{n=1}^{9} \ln\left(e\frac{n}{n+1}\right)$.
A. 9 - ln(10) B. 9e - ln(9) C. 8 D. 10 E. NOTA
6. The sum of an infinite geometric sequence is 8, and the sum of the first 3 terms is 7. Find the first term.
A. $\frac{1}{2}$ B. $3\sqrt{2}$ C. 4 D. 6 E. NOTA
7. Suppose $\sum_{n=0}^{\infty} \left(\frac{a}{b}\right)^n = 2$. How many positive, real coordinate pairs (a, b) , with $a, b < 7$, satisfy the identity?
A. 3 B. 4 C. 6 D. 7 E. NOTA
8. For the sake of notational clarity, mathematicians often write $e^x = \exp(x)$. Now consider $\prod_{n=1}^{10} \exp\left(\frac{i\pi n}{3}\right)$, which can be simplified as $cis(\theta)$. Find the smallest non-negative value of θ such that $\prod_{n=1}^{10} \exp\left(\frac{i\pi n}{3}\right) = cis(\theta)$.
A. 0 B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$ D. π E. NOTA

,

9. Consider the sum of the first 23 terms of the series $\log x^3 + \log \left(\frac{x^4}{y^2}\right) + \log \left(\frac{x^5}{y^4}\right) + \cdots$. This sum can be written in the form $\log \left(\frac{x^a}{y^b}\right)$. Find a + b.

- A. 805 B. 828 C. 851 D. 854 E. NOTA
- 10. Find $\sum_{n=2}^{20} \frac{1}{n^2 n}$.
 - A. $\frac{1}{20}$ B. $\frac{9}{20}$ C. $\frac{19}{20}$ D. 1 E. NOTA
- 11. Define the matrix $A = \begin{pmatrix} 2^n & -2^n \\ 2 n & n 1 \end{pmatrix}$. Find $\sum_{n=1}^{\infty} \frac{1}{\det(A)}$. A. -1 B. $-\frac{1}{2}$ C. $-\frac{1}{2}$ D. 1 E. NOTA
- 12. Let a_n be the n^{th} term of a complex-valued sequence, where $a_1 = 2i$ and $a_4 = -16$. Find the sum of the squares of all possible common ratios.
 - A. -8 B. 8*i* C. $i(2-2\sqrt{3})$ D. $i(4-\sqrt{3})$ E. NOTA
- 13. Find $\sum_{x=-2}^{2} \left\lfloor \frac{x}{3} + 0.8 \right\rfloor$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to x.
 - A. -1 B. 0 C. 1 D. 2 E. NOTA

14. Suppose $\sum_{n=1}^{8} a_n = 16$ with $a_1 = -5$. If a_n is arithmetic and d is the common difference, find $\sum_{n=1}^{6} \frac{d^n}{18}$.

- A. 6 B. $-\frac{31}{9}$ C. $\frac{31}{9}$ D. 7 E. NOTA
- 15. Which of the following are true?
 - I. There are 38 terms in $\sum_{n=4}^{42} a_n$. II. If $S = r + ra + ra^2 + \cdots$, and |r| < 1, then the infinite series converges. III. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$. (A) II only (B) III only (C) II, III (D) I, II, III (E) NOTA

- 16. Consider $\sum_{n=42}^{\infty} ((x+1)^2 4)^n$, where $x \in \mathbb{R}$. Select the smallest interval below which contains all positive values of x for which the series converges.
 - (A) $(-\infty, 2)$ (B) (-2, 1] (C) (0, 1.01) (D) $(1, \infty)$ (E) NOTA
- 17. If the 3rd term of a real geometric sequence is 10, and the 7th term is 160, which of the following is a possible value for the second term?

(A)
$$-5$$
 (B) $\frac{5}{2}$ (C) $-\frac{5}{2}$ (D) 8 (E) NOTA

18. Let $S_n = \sum_{k=1}^n a_n = 2n^2 + 6n$, where a_n is the nth term of an arithmetic sequence. the terms a_3, a_t and a_{15} comprise consecutive terms of a geometric sequence. Find t.

(A) 5 (B) 7 (C) 8 (D) 9 (E) NOTA

For the next two questions, let $u_k = (-1)^{k-1}$.

- 19. Find the following sum: $\sum_{k=1}^{\infty} u_k$.
 - (A) $\frac{1}{2}$ (B) -1 (C) 0 (D) 1 (E) NOTA
- 20. Now define $S_n = \sum_{k=1}^n u_k$ and $\sigma_n = \frac{1}{n} \sum_{k=1}^n S_k$. If $\lim_{n \to \infty} \sigma_n$ exists, we call the limit the Cesáro sum, and say u_k is Cesáro summable. Indicate the Cesáro sum, if it exists.
 - (A) 0 (B) 1 (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$ (E) NOTA

21. Find the sum of the infinite sequence whose nth term is $\frac{5^{n-1}}{6^n}$. Assume the series starts when n = 1.

(A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) 1 (D) 25 (E) NOTA

Use the following information for the next two questions: Let C represent the Cantor set, which is created as follows: start with the unit interval [0,1] and remove the open "middle third" interval, $(\frac{1}{3}, \frac{2}{3})$. From the two remaining closed segments, $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$, remove the two open middle third segments, $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$. There will now be four closed segments remaining; remove the four open middle third segments from the four closed segments. Repeat this process ad infinitum. Note that infinitely many points in [0, 1], including segment endpoints such as $0, 1, \frac{1}{3}$, etc. will never be removed by this process. These remaining points are called the Cantor set, C.

- 22. Find the total length of all removed middle third segments. You may assume that the length of an open interval (x, y) is the same as the closed interval [x, y].
 - (A) 0 (B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{8}{9}$ (E) NOTA

23. Which of the following points is not a member of the Cantor Set, C?

I.
$$\frac{1}{27}$$

II. $\frac{7}{27}$
III. $\frac{2}{5}$
(A) I only (B) III only (C) I, II (D) II, III (E) NOTA

- 24. The sum of the first n terms of an arithmetic sequence are given by the formula $S_n = 3n^2$. Find the sum of the first term and the common difference.
 - (A) 3 (B) 6 (C) 9 (D) 12 (E) NOTA $\sum_{n=1}^{\infty}$

25. Find the sum of all positive real solutions of $\sum_{k=0}^{\infty} \log_{2^{2^n}}(x) = x$.

- (A) 1 (B) 2 (C) 4 (D) $\log(2)$ (E) NOTA
- 26. Let A_6 be the sum of the first six terms of an arithmetic sequence, and G_6 be the sum of the first six terms of a geometric sequence. Both sequences share the same first term, and the common difference of the arithmetic sequence equals the common ratio of the geometric sequence, which equals two. Given that $\frac{A_6}{G_6} = \frac{1}{2}$, find $G_6 A_6$.
 - (A) 1 (B) 3 (C) 48 (D) 144 (E) NOTA

27. Find the sum of the infinite series: $1 + 4\left(\frac{1}{2}\right)^2 + 7\left(\frac{1}{2}\right)^4 + 10\left(\frac{1}{2}\right)^6 + 13\left(\frac{1}{2}\right)^8 + \cdots$.

(A) $\frac{8}{3}$ (B) $e^{\frac{\pi}{2}}$ (C) $\frac{9}{2}$ (D) $\frac{11}{2}$. (E) NOTA

28. A circular disk is cut into thirteen sectors whose areas form an arithmetic sequence. The angle of the largest sector is three times the angle of the smallest sector. Let $\frac{p}{q}\pi$ be the size of the angle of the largest sector, where $\frac{p}{q}$ is in lowest terms. Which of the following represents the sum p + q?

(A) 2 (B) 12 (C) 13 (D) 16 (E) NOTA

29. Find $\sum_{n=1}^{\infty} (1-z)^n$. Assume the series converges.

(A) z^{-1} (B) $z^{-1} - 1$ (C) $\frac{z-1}{z-2}$ (D) 1 (E) NOTA

30. Find $\sum_{n=7}^{23} a_n$ when $a_7 = 5$ and $a_{23} = 17$, and a_n is arithmetic.

(A) 198 (B) 187 (C) 171 (D) 165 (E) NOTA

TB1 Let
$$a_n = \frac{5n^3 + 3n^5 + 2n^7 + 7n^2}{3n^3 + 5n^2 + 7n^5 + 5n^7}$$
. Find $\lim_{n \to \infty} a_n$.

TB2 Find the sum of all multiples of three between 11 and 111, inclusive.

TB3 Find the 138th digit after the decimal point in the expansion of $\frac{1}{7}$.