2009 Mu Alpha Theta National Convention

1. B
$$\frac{8r_{-2}^{22}}{2} + \frac{8r_{-2}^{22}}{2} + (8-2) + \ln(8) - \ln(2) = 168 + 30 + 6 + \ln(4) = 204 + 2\ln(2).$$

2. B $(\sqrt{3}^{2} + 2) + (1^{2} + 2) + (2^{2} + 2) + (3^{2} + 2) = 22.$
3. A $(15 \text{ gs}) = \cos(x) - i\sin(x); \int_{0}^{x} \cos(x) - i\sin(x)dx = \sin(\pi) - \sin(0) + i\cos(\pi) - i\cos(0) = -2i.$
5. C $u = -x^{2}; du = -2xdx \rightarrow -\frac{1}{2} \int_{0}^{1} -2xe^{-x^{2}} dx = -\frac{1}{2} (e^{-1} - e^{0}) = \frac{e}{-2}.$
6. D First, evaluate $f(x)$ using integration by parts; we see that $\int \sin(\ln(x))dx$
 $= x \sin(\ln(x)) - \int \cos(\ln(x))dx$. Since this cancels with $g(x)$, we're left with $x \sin(\ln(x))$ from 0 to $e^{\frac{\pi}{2}}$.
This is $e^{\frac{\pi}{2}}$, while $\ln(0)$ would cause a problem by itself, $xin(\ln(x))$ goes to 0 as x goes to 0.
7. E $f'(x) + g'(x) = e^{e}(\sin(x) + \cos(x)) = e^{\frac{\pi}{2}}.$
8. D We need $\int_{0}^{1} x^{3}dx - \int_{-\frac{\pi}{2}}^{1} 3x^{2} - 6x - 9dx - \int_{0}^{3} 3x^{2} - 6x - 9dx + \int_{0}^{3} 3x^{2} - 6x - 9dx = 224.$
10. C The trick here is not subtracting 16 from both sides. If $f(x) < g(x)$, then $x' + 4x^{3} + 6x^{2} - 4x + 1 < 16$; thus, $(x - 1)^{4} < 16$, and $-1 < x < 3$. The area of the region is thus $\int_{-\frac{\pi}{2}}^{1} 16 - (x - 1)^{4} dx = \frac{25}{5}.$
11. B Break $\frac{s}{2}$ -junto partial fractions to obtain $\frac{1}{x^{3}} - \frac{1}{x^{3}} + \frac{1}{x^{3}}$ the dual to $x = 3$ pole $\ln(x - 3) - \ln(x + 3)$; plug in the limits to obtain $\ln 7 - \ln 3$. 12. D $(2|+|-2| = 4.)$
13. B Note that the odd powered terms cancel and so we have
120 $\int_{0}^{1} x^{4} + x^{2} dx = 2(120/5 + 120/3) = 128.$ 14. D I and IV will always overestimate the integral; II will always underestimate; III is impossible to determine without knowing the actual function.
15. B Consider the diagram $A^{-\frac{1}{2}} \frac{e^{4}}{2} + \frac{1}{2} \sqrt{1 - \frac{x^{2}}{4}} + \frac{1}{2} \sqrt{4 - x^{2}}$. Using trig substitution to evaluate the integral, we get arcsing $\frac{x}{2} + \frac{1}{2} \sqrt{1 - \frac{x^{2}}{4}} = \frac{1}{2} \sqrt{4 - x^{2}}$. Using trig substitution to evaluate the integral, we get arcsing $\frac{x}{2} + \frac{1}{2} \sqrt{1 - \frac{x^{2}}{4}} = \frac{1}{2} \sqrt{4 - x^{2}}$. Using trig substitution to evaluate the integral, we get arc

22. C
$$f'(x) = 2x \sin(\sqrt{x^2}) \to f'(\frac{\pi}{3}) = \frac{2\pi}{3} \frac{\sqrt{3}}{2} = \frac{\pi\sqrt{3}}{3}$$

23. B $\sqrt{\frac{1-x}{1+x}} = \sqrt{\frac{(1-x)^2}{1-x^2}} = \frac{1-x}{\sqrt{1-x^2}} = \frac{1}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}}$; integrating, we get $\arcsin(x) + \sqrt{1-x^2}$; plugging in, this is $\frac{\pi+3\sqrt{3}-6}{6}$.

Let $u = \frac{x}{2}$; dx = 2du. Rewriting the integrand in terms of u, we get $2u^{2u}(1 + \ln(u))$ 24. **D** $= 2u^u(u^u(1 + \ln(u)))$. Since $u^u(1 + \ln(u))$ is the derivative of u^u , when integrating we get $(u^u)^2$; plugging in u = 1 and u = 2 (taken from the corresponding x-values), we get 15. $f(x) = x^3 - 6x^2 + 5x + C; f(0) = f(1) = C; f(2) = -6 + C \rightarrow 2C = -6 + C \rightarrow C = -6;$ 25. **A** f(-2) = -8 - 24 - 10 - 6 = -48.Let $u = \cos(x) + 1 \rightarrow du = -\sin(x)$; this integral becomes $-\int_{0}^{\frac{3}{2}} \frac{du}{u} = -\ln\frac{3}{4} = \ln\frac{4}{3}$. 26. **B** 27. **A** Just graph the function on the interval. 21. A sust graph the function of the interval. 28. B $kN = \frac{dN}{dt} \times t \rightarrow \frac{dN}{N} = k\frac{dt}{t} \rightarrow \ln(N) = k\ln(t) + C \rightarrow N = Ct^k$; plugging in t = 1 gives C = 1337 and plugging in t = 2 gives k = 2; hence, when t = 3, $N = 1337(3^2) = 1337(9) = 12033$. 29. A Let $x = \tan(u)$; the integrand becomes $\frac{\ln(\tan(u))}{(\tan^2(u)+1}(\sec^2(u))du = \ln(\tan(u))du$, and the limits become 0 and $\frac{\pi}{2}$. Rewrite this integral as $\int_{0}^{\frac{\pi}{2}} \ln(\sin(u)) du - \int_{0}^{\frac{\pi}{2}} \ln(\cos(u)) du$; let $I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin(u)) du$ and let $I_2 = \int_{-\infty}^{\frac{\pi}{2}} \ln(\cos(u)) du$. Leaving I_1 alone, substitute $u = \frac{\pi}{2} - t$ for I_2 ; we get $\int_{\underline{\pi}}^{0} \ln(\cos\left(\frac{\pi}{2} - t\right))(-dt) = -\int_{\underline{\pi}}^{0} \ln(\sin(t))dt.$ Switching the bounds to get rid of the negative sign, this integral becomes $\int_{a}^{\frac{\pi}{2}} \ln(\sin(t)) dt$; hence, $I_1 = I_2$, and the answer is zero. NOTE: This question should not be changed to E. Both I_1 and I_2 , despite being improper integrals, are convergent (to a value of $\frac{-\pi \ln 2}{2}$) Note that the integral is dy, not dx! It's just -8x. 30. **E**